These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18221264)

  • 1. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets.
    van Kessel JC; Hatfull GF
    Mol Microbiol; 2008 Mar; 67(5):1094-107. PubMed ID: 18221264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombineering mycobacteria and their phages.
    van Kessel JC; Marinelli LJ; Hatfull GF
    Nat Rev Microbiol; 2008 Nov; 6(11):851-7. PubMed ID: 18923412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35.
    Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterial recombineering.
    van Kessel JC; Hatfull GF
    Methods Mol Biol; 2008; 435():203-15. PubMed ID: 18370078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombineering in Mycobacterium tuberculosis.
    van Kessel JC; Hatfull GF
    Nat Methods; 2007 Feb; 4(2):147-52. PubMed ID: 17179933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.
    Thomason LC; Costantino N; Court DL
    mBio; 2016 Sep; 7(5):. PubMed ID: 27624131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombineering in Non-Model Bacteria.
    Corts A; Thomason LC; Costantino N; Court DL
    Curr Protoc; 2022 Dec; 2(12):e605. PubMed ID: 36546891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of a new recombineering system by gap repair].
    Li SH; Hong X; Yu M; Chen W; Huang CF; Zhou JG
    Yi Chuan Xue Bao; 2005 May; 32(5):533-7. PubMed ID: 16018266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli.
    Li XT; Costantino N; Lu LY; Liu DP; Watt RM; Cheah KS; Court DL; Huang JD
    Nucleic Acids Res; 2003 Nov; 31(22):6674-87. PubMed ID: 14602928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis.
    Murphy KC
    Methods Mol Biol; 2021; 2314():301-321. PubMed ID: 34235660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages.
    Datta S; Costantino N; Zhou X; Court DL
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1626-31. PubMed ID: 18230724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes.
    Murphy KC; Nelson SJ; Nambi S; Papavinasasundaram K; Baer CE; Sassetti CM
    mBio; 2018 Dec; 9(6):. PubMed ID: 30538179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain.
    Song J; Dong H; Ma C; Zhao B; Shang G
    FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate.
    Mosberg JA; Lajoie MJ; Church GM
    Genetics; 2010 Nov; 186(3):791-9. PubMed ID: 20813883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phage recombinases and their applications.
    Murphy KC
    Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lambda red mediated gap repair utilizes a novel replicative intermediate in Escherichia coli.
    Reddy TR; Fevat LM; Munson SE; Stewart AF; Cowley SM
    PLoS One; 2015; 10(3):e0120681. PubMed ID: 25803509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides.
    Oppenheim AB; Rattray AJ; Bubunenko M; Thomason LC; Court DL
    Virology; 2004 Feb; 319(2):185-9. PubMed ID: 14980479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells.
    Zhang Y; Muyrers JP; Rientjes J; Stewart AF
    BMC Mol Biol; 2003 Jan; 4(1):1. PubMed ID: 12530927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
    Sawitzke JA; Thomason LC; Bubunenko M; Li X; Costantino N; Court DL
    Methods Enzymol; 2013; 533():157-77. PubMed ID: 24182922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Broad Host Range Plasmid-Based Roadmap for ssDNA-Based Recombineering in Gram-Negative Bacteria.
    Aparicio T; de Lorenzo V; Martínez-García E
    Methods Mol Biol; 2020; 2075():383-398. PubMed ID: 31584177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.