These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 18221366)
1. BMP inhibition enhances axonal growth and functional recovery after spinal cord injury. Matsuura I; Taniguchi J; Hata K; Saeki N; Yamashita T J Neurochem; 2008 May; 105(4):1471-9. PubMed ID: 18221366 [TBL] [Abstract][Full Text] [Related]
2. Bone morphogenetic proteins mediate cellular response and, together with Noggin, regulate astrocyte differentiation after spinal cord injury. Xiao Q; Du Y; Wu W; Yip HK Exp Neurol; 2010 Feb; 221(2):353-66. PubMed ID: 20005873 [TBL] [Abstract][Full Text] [Related]
3. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. Hata K; Fujitani M; Yasuda Y; Doya H; Saito T; Yamagishi S; Mueller BK; Yamashita T J Cell Biol; 2006 Apr; 173(1):47-58. PubMed ID: 16585268 [TBL] [Abstract][Full Text] [Related]
4. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Hains BC; Saab CY; Lo AC; Waxman SG Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836 [TBL] [Abstract][Full Text] [Related]
5. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury. Kyoto A; Hata K; Yamashita T Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of TGF-beta1 promotes functional recovery after spinal cord injury. Kohta M; Kohmura E; Yamashita T Neurosci Res; 2009 Dec; 65(4):393-401. PubMed ID: 19744530 [TBL] [Abstract][Full Text] [Related]
8. [FGF-2-treatment improves locomotor function via axonal regeneration in the transected rat spinal cord]. Furukawa S; Furukawa Y Brain Nerve; 2007 Dec; 59(12):1333-9. PubMed ID: 18095482 [TBL] [Abstract][Full Text] [Related]
9. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Ji B; Li M; Wu WT; Yick LW; Lee X; Shao Z; Wang J; So KF; McCoy JM; Pepinsky RB; Mi S; Relton JK Mol Cell Neurosci; 2006 Nov; 33(3):311-20. PubMed ID: 17011208 [TBL] [Abstract][Full Text] [Related]
10. Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord. Fabes J; Anderson P; Brennan C; Bolsover S Eur J Neurosci; 2007 Nov; 26(9):2496-505. PubMed ID: 17970742 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model. Bonnici B; Kapfhammer JP Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321 [TBL] [Abstract][Full Text] [Related]
13. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Byrnes KR; Waynant RW; Ilev IK; Wu X; Barna L; Smith K; Heckert R; Gerst H; Anders JJ Lasers Surg Med; 2005 Mar; 36(3):171-85. PubMed ID: 15704098 [TBL] [Abstract][Full Text] [Related]
14. Bone Morphogenetic Proteins: Inhibitors of Myelination in Development and Disease. Grinspan JB Vitam Horm; 2015; 99():195-222. PubMed ID: 26279377 [TBL] [Abstract][Full Text] [Related]
15. Graft of pre-injured sural nerve promotes regeneration of corticospinal tract and functional recovery in rats with chronic spinal cord injury. Feng SQ; Zhou XF; Rush RA; Ferguson IA Brain Res; 2008 May; 1209():40-8. PubMed ID: 18405884 [TBL] [Abstract][Full Text] [Related]