BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18221514)

  • 1. Multiple molecular dynamics simulation of the isoforms of human translation elongation factor 1A reveals reversible fluctuations between "open" and "closed" conformations and suggests specific for eEF1A1 affinity for Ca2+-calmodulin.
    Kanibolotsky DS; Novosyl'na OV; Abbott CM; Negrutskii BS; El'skaya AV
    BMC Struct Biol; 2008 Jan; 8():4. PubMed ID: 18221514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular docking uncovers TSPY binds more efficiently with eEF1A2 compared to eEF1A1.
    Panwar D; Rawal L; Ali S
    J Biomol Struct Dyn; 2015; 33(7):1412-23. PubMed ID: 25105321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A2 isoform of mammalian translation factor eEF1A displays increased tyrosine phosphorylation and ability to interact with different signalling molecules.
    Panasyuk G; Nemazanyy I; Filonenko V; Negrutskii B; El'skaya AV
    Int J Biochem Cell Biol; 2008; 40(1):63-71. PubMed ID: 17936057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin.
    Novosylna O; Doyle A; Vlasenko D; Murphy M; Negrutskii B; El'skaya A
    Biol Chem; 2017 Jan; 398(1):113-124. PubMed ID: 27483363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation.
    Soares DC; Barlow PN; Newbery HJ; Porteous DJ; Abbott CM
    PLoS One; 2009 Jul; 4(7):e6315. PubMed ID: 19636410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. eEF1A2 and neuronal degeneration.
    Abbott CM; Newbery HJ; Squires CE; Brownstein D; Griffiths LA; Soares DC
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1293-7. PubMed ID: 19909265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous epitope tagging of eEF1A2 in mice reveals early embryonic expression of eEF1A2 and subcellular compartmentalisation of neuronal eEF1A1 and eEF1A2.
    Davies FCJ; Marshall GF; Pegram E; Gadd D; Abbott CM
    Mol Cell Neurosci; 2023 Sep; 126():103879. PubMed ID: 37429391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. eEF1A demonstrates paralog specific effects on HIV-1 reverse transcription efficiency.
    Li D; Rawle DJ; Wu Z; Jin H; Lin MH; Lor M; Abbott CM; Harrich D
    Virology; 2019 Apr; 530():65-74. PubMed ID: 30782564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes.
    Crepin T; Shalak VF; Yaremchuk AD; Vlasenko DO; McCarthy A; Negrutskii BS; Tukalo MA; El'skaya AV
    Nucleic Acids Res; 2014 Nov; 42(20):12939-48. PubMed ID: 25326326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural rationale for the cross-resistance of tumor cells bearing the A399V variant of elongation factor eEF1A1 to the structurally unrelated didemnin B, ternatin, nannocystin A and ansatrienin B.
    Sánchez-Murcia PA; Cortés-Cabrera Á; Gago F
    J Comput Aided Mol Des; 2017 Oct; 31(10):915-928. PubMed ID: 28900796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs.
    Farra R; Scaggiante B; Guerra C; Pozzato G; Grassi M; Zanconati F; Perrone F; Ferrari C; Trotta F; Grassi G; Dapas B
    Int J Pharm; 2017 Jun; 525(2):367-376. PubMed ID: 28229942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights on the interaction between the isoforms 1 and 2 of human translation elongation factor 1A.
    Migliaccio N; Ruggiero I; Martucci NM; Sanges C; Arbucci S; Tatè R; Rippa E; Arcari P; Lamberti A
    Biochimie; 2015 Nov; 118():1-7. PubMed ID: 26212729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human eukaryotic elongation factor 1A forms oligomers through specific cysteine residues.
    Liu T; Yang Y; Wang D; Xiao Y; Du G; Wu L; Ding M; Li L; Wu C
    Acta Biochim Biophys Sin (Shanghai); 2015 Dec; 47(12):1011-7. PubMed ID: 26515794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raf kinases mediate the phosphorylation of eukaryotic translation elongation factor 1A and regulate its stability in eukaryotic cells.
    Sanges C; Scheuermann C; Zahedi RP; Sickmann A; Lamberti A; Migliaccio N; Baljuls A; Marra M; Zappavigna S; Reinders J; Rapp U; Abbruzzese A; Caraglia M; Arcari P
    Cell Death Dis; 2012 Mar; 3(3):e276. PubMed ID: 22378069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the Expression and Subcellular Distribution of
    Wefers Z; Alecki C; Huang R; Jacob-Tomas S; Vera M
    Cells; 2022 Jun; 11(12):. PubMed ID: 35741005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression.
    Svobodová K; Horák P; Stratil A; Bartenschlager H; Van Poucke M; Chalupová P; Dvořáková V; Knorr C; Stupka R; Čítek J; Šprysl M; Palánová A; Peelman LJ; Geldermann H; Knoll A
    Mol Biol Rep; 2015 Aug; 42(8):1257-64. PubMed ID: 25749814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation elongation factor eEF1A1 is a novel partner of a multifunctional protein Sgt1.
    Novosylna O; Jurewicz E; Pydiura N; Goral A; Filipek A; Negrutskii B; El'skaya A
    Biochimie; 2015 Dec; 119():137-45. PubMed ID: 26545799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A.
    Anand M; Balar B; Ulloque R; Gross SR; Kinzy TG
    J Biol Chem; 2006 Oct; 281(43):32318-26. PubMed ID: 16954224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oncogenic activation of EEF1A2 expression: a journey from a putative to an established oncogene.
    Patel SA; Hassan MK; Dixit M
    Cell Mol Biol Lett; 2024 Jan; 29(1):6. PubMed ID: 38172654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary importance of translation elongation factor eEF1A variant switching: eEF1A1 down-regulation in muscle is conserved in Xenopus but is controlled at a post-transcriptional level.
    Newbery HJ; Stancheva I; Zimmerman LB; Abbott CM
    Biochem Biophys Res Commun; 2011 Jul; 411(1):19-24. PubMed ID: 21722626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.