These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18221539)
1. The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system. Podar M; Wall MA; Makarova KS; Koonin EV Biol Direct; 2008 Jan; 3():2. PubMed ID: 18221539 [TBL] [Abstract][Full Text] [Related]
2. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. Anantharaman V; Aravind L BMC Genomics; 2004 Jul; 5(1):45. PubMed ID: 15257761 [TBL] [Abstract][Full Text] [Related]
3. Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Aravind L; Koonin EV Genome Res; 2001 Aug; 11(8):1365-74. PubMed ID: 11483577 [TBL] [Abstract][Full Text] [Related]
4. Longin-like folds identified in CHiPS and DUF254 proteins: vesicle trafficking complexes conserved in eukaryotic evolution. Kinch LN; Grishin NV Protein Sci; 2006 Nov; 15(11):2669-74. PubMed ID: 17075139 [TBL] [Abstract][Full Text] [Related]
6. Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea. Lu Z; Fu T; Li T; Liu Y; Zhang S; Li J; Dai J; Koonin EV; Li G; Chu H; Li M mBio; 2020 May; 11(3):. PubMed ID: 32430468 [TBL] [Abstract][Full Text] [Related]
7. Evolution of diverse cell division and vesicle formation systems in Archaea. Makarova KS; Yutin N; Bell SD; Koonin EV Nat Rev Microbiol; 2010 Oct; 8(10):731-41. PubMed ID: 20818414 [TBL] [Abstract][Full Text] [Related]
8. [Homologous protein domains in superkingdoms Archaea, Bacteria, and Eukaryota and the problem of the origin of eukaryotes]. Markov AV; Kulikov AM Izv Akad Nauk Ser Biol; 2005; (4):389-400. PubMed ID: 16212260 [TBL] [Abstract][Full Text] [Related]
10. The origins of modern proteomes. Kurland CG; Canbäck B; Berg OG Biochimie; 2007 Dec; 89(12):1454-63. PubMed ID: 17949885 [TBL] [Abstract][Full Text] [Related]
11. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. Anantharaman V; Koonin EV; Aravind L J Mol Biol; 2001 Apr; 307(5):1271-92. PubMed ID: 11292341 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. Iyer LM; Koonin EV; Aravind L BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882 [TBL] [Abstract][Full Text] [Related]
13. Protein length in eukaryotic and prokaryotic proteomes. Brocchieri L; Karlin S Nucleic Acids Res; 2005; 33(10):3390-400. PubMed ID: 15951512 [TBL] [Abstract][Full Text] [Related]
14. Evolution of specificity in the eukaryotic endomembrane system. Dacks JB; Peden AA; Field MC Int J Biochem Cell Biol; 2009 Feb; 41(2):330-40. PubMed ID: 18835459 [TBL] [Abstract][Full Text] [Related]
15. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. Malgieri G; Palmieri M; Russo L; Fattorusso R; Pedone PV; Isernia C FEBS J; 2015 Dec; 282(23):4480-96. PubMed ID: 26365095 [TBL] [Abstract][Full Text] [Related]
16. Protein-length distributions for the three domains of life. Zhang J Trends Genet; 2000 Mar; 16(3):107-9. PubMed ID: 10689349 [No Abstract] [Full Text] [Related]
17. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes. Vishwanath P; Favaretto P; Hartman H; Mohr SC; Smith TF Mol Phylogenet Evol; 2004 Dec; 33(3):615-25. PubMed ID: 15522791 [TBL] [Abstract][Full Text] [Related]
18. The many faces of the helix-turn-helix domain: transcription regulation and beyond. Aravind L; Anantharaman V; Balaji S; Babu MM; Iyer LM FEMS Microbiol Rev; 2005 Apr; 29(2):231-62. PubMed ID: 15808743 [TBL] [Abstract][Full Text] [Related]
19. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs. Dong JH; Wen JF; Tian HF Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198 [TBL] [Abstract][Full Text] [Related]
20. Prototypic SNARE Proteins Are Encoded in the Genomes of Heimdallarchaeota, Potentially Bridging the Gap between the Prokaryotes and Eukaryotes. Neveu E; Khalifeh D; Salamin N; Fasshauer D Curr Biol; 2020 Jul; 30(13):2468-2480.e5. PubMed ID: 32442459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]