These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 18221539)
21. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. Kienle N; Kloepper TH; Fasshauer D BMC Evol Biol; 2016 Oct; 16(1):215. PubMed ID: 27756227 [TBL] [Abstract][Full Text] [Related]
22. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+ symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Beuming T; Shi L; Javitch JA; Weinstein H Mol Pharmacol; 2006 Nov; 70(5):1630-42. PubMed ID: 16880288 [TBL] [Abstract][Full Text] [Related]
23. Different mechanistic requirements for prokaryotic and eukaryotic chaperonins: a lattice study. Jacob E; Horovitz A; Unger R Bioinformatics; 2007 Jul; 23(13):i240-8. PubMed ID: 17646302 [TBL] [Abstract][Full Text] [Related]
24. SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Panavas T; Sanders C; Butt TR Methods Mol Biol; 2009; 497():303-17. PubMed ID: 19107426 [TBL] [Abstract][Full Text] [Related]
25. Origin of the nuclear proteome on the basis of pre-existing nuclear localization signals in prokaryotic proteins. Lisitsyna OM; Kurnaeva MA; Arifulin EA; Shubina MY; Musinova YR; Mironov AA; Sheval EV Biol Direct; 2020 Apr; 15(1):9. PubMed ID: 32345340 [TBL] [Abstract][Full Text] [Related]
26. The relative ages of eukaryotes and akaryotes. Penny D; Collins LJ; Daly TK; Cox SJ J Mol Evol; 2014 Dec; 79(5-6):228-39. PubMed ID: 25179144 [TBL] [Abstract][Full Text] [Related]
27. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System. Gould SB; Garg SG; Martin WF Trends Microbiol; 2016 Jul; 24(7):525-534. PubMed ID: 27040918 [TBL] [Abstract][Full Text] [Related]
28. The evolutionary repertoires of the eukaryotic-type ABC transporters in terms of the phylogeny of ATP-binding domains in eukaryotes and prokaryotes. Igarashi Y; Aoki KF; Mamitsuka H; Kuma K; Kanehisa M Mol Biol Evol; 2004 Nov; 21(11):2149-60. PubMed ID: 15297601 [TBL] [Abstract][Full Text] [Related]
29. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes. Itoh M; Nacher JC; Kuma K; Goto S; Kanehisa M Genome Biol; 2007; 8(6):R121. PubMed ID: 17588271 [TBL] [Abstract][Full Text] [Related]
30. Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota". Koonin EV; Makarova KS; Elkins JG Biol Direct; 2007 Dec; 2():38. PubMed ID: 18081935 [TBL] [Abstract][Full Text] [Related]
31. The archaeal origins of the eukaryotic translational system. Hartman H; Favaretto P; Smith TF Archaea; 2006 Aug; 2(1):1-9. PubMed ID: 16877317 [TBL] [Abstract][Full Text] [Related]
32. An evolutionary perspective on eukaryotic membrane trafficking. Gurkan C; Koulov AV; Balch WE Adv Exp Med Biol; 2007; 607():73-83. PubMed ID: 17977460 [TBL] [Abstract][Full Text] [Related]
33. Evolutionary origin of eukaryotic cells. Kostianovsky M Ultrastruct Pathol; 2000; 24(2):59-66. PubMed ID: 10808550 [TBL] [Abstract][Full Text] [Related]
34. Prokaryotic structural maintenance of chromosomes (SMC) proteins: distribution, phylogeny, and comparison with MukBs and additional prokaryotic and eukaryotic coiled-coil proteins. Soppa J Gene; 2001 Oct; 278(1-2):253-64. PubMed ID: 11707343 [TBL] [Abstract][Full Text] [Related]
35. Conserved eukaryotic histone-fold residues substituted into an archaeal histone increase DNA affinity but reduce complex flexibility. Soares DJ; Marc F; Reeve JN J Bacteriol; 2003 Jun; 185(11):3453-7. PubMed ID: 12754245 [TBL] [Abstract][Full Text] [Related]
36. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. Koumandou VL; Dacks JB; Coulson RM; Field MC BMC Evol Biol; 2007 Feb; 7():29. PubMed ID: 17319956 [TBL] [Abstract][Full Text] [Related]
37. Potential coexistence of both bacterial and eukaryotic small RNA biogenesis and functional related protein homologs in Archaea. Li Y; Liu X; Huang L; Guo H; Wang XJ J Genet Genomics; 2010 Aug; 37(8):493-503. PubMed ID: 20816382 [TBL] [Abstract][Full Text] [Related]
38. TA, GT and AC are significantly under-represented in open reading frames of prokaryotic and eukaryotic protein-coding genes. Wang Y; Zeng Z; Liu TL; Sun L; Yao Q; Chen KP Mol Genet Genomics; 2019 Jun; 294(3):637-647. PubMed ID: 30758669 [TBL] [Abstract][Full Text] [Related]
39. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs. Burton SP; Burton ZF Transcription; 2014; 5(4):e967599. PubMed ID: 25483602 [TBL] [Abstract][Full Text] [Related]
40. Patterns and processes in the evolution of the eukaryotic endomembrane system. Elias M Mol Membr Biol; 2010 Nov; 27(8):469-89. PubMed ID: 21067450 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]