These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18221749)

  • 1. Pd-Pt and Fe-Ni nanoparticles formed by covalent molecular assembly in supercritical carbon dioxide.
    Puniredd SR; Weiyi S; Srinivasan MP
    J Colloid Interface Sci; 2008 Apr; 320(1):333-40. PubMed ID: 18221749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent molecular assembly in supercritical carbon dioxide: formation of nanoparticles in immobilized dendrimers within a porous silica gel matrix.
    Puniredd SR; Nguan BC; Srinivasan MP
    J Colloid Interface Sci; 2009 May; 333(2):679-83. PubMed ID: 19232627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tribological properties of nanoparticle-laden ultrathin films formed by covalent molecular assembly.
    Puniredd SR; Wai YK; Satyanarayana N; Sinha SK; Srinivasan MP
    Langmuir; 2007 Jul; 23(16):8299-303. PubMed ID: 17608504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendrimer-encapsulated Pt nanoparticles in supercritical medium: synthesis, characterization, and application to device fabrication.
    Puniredd SR; Yin CM; Hooi YS; Lee PS; Srinivasan MP
    J Colloid Interface Sci; 2009 Apr; 332(2):505-10. PubMed ID: 19185878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalent molecular assembly of multilayer dendrimer ultrathin films in supercritical medium.
    Puniredd SR; Srinivasan MP
    J Colloid Interface Sci; 2007 Feb; 306(1):118-27. PubMed ID: 17045602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent molecular assembly of oligoimide ultrathin films in supercritical and liquid solvent media.
    Puniredd SR; Srinivasan MP
    Langmuir; 2005 Aug; 21(17):7812-22. PubMed ID: 16089387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent molecular assembly in supercritical carbon dioxide: a comparative study between amine- and anhydride-derivatized surfaces.
    Puniredd SR; Srinivasan MP
    Langmuir; 2006 Apr; 22(9):4092-9. PubMed ID: 16618149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction.
    Ye H; Crooks RM
    J Am Chem Soc; 2007 Mar; 129(12):3627-33. PubMed ID: 17335206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Ni nanoparticles by selective oxidation of permalloy thin film during imidization of polyamic acid.
    Lim SK; Yoon CS; Kim CK
    Chem Commun (Camb); 2004 Apr; (7):810-1. PubMed ID: 15045075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-Pt alloy nanoparticles produced using a template of nanoparticle array.
    Kim JH; Kim J; Kim CK; Yoon CS
    J Colloid Interface Sci; 2006 Nov; 303(1):131-6. PubMed ID: 16890238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles fabricated by selective reaction of Fe100-xPtx alloy films during imidization of polyamic acid.
    Lim SK; Yoon CS; Kim CK; Kim YH
    J Colloid Interface Sci; 2005 Jul; 287(2):501-6. PubMed ID: 15925616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a covalently attached self-assembly multilayer film based on CdTe nanoparticles.
    Zhang H; Yang B; Wang R; Zhang G; Hou X; Wu L
    J Colloid Interface Sci; 2002 Mar; 247(2):361-5. PubMed ID: 16290475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen storage mediated by Pd and Pt nanoparticles.
    Yamauchi M; Kobayashi H; Kitagawa H
    Chemphyschem; 2009 Oct; 10(15):2566-76. PubMed ID: 19823997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the interface in vapor-deposited bimetallic Pd-Au and Pt-Au films by CO adsorption from the liquid phase.
    Ferri D; Behzadi B; Kappenberger P; Hauert R; Ernst KH; Baiker A
    Langmuir; 2007 Jan; 23(3):1203-8. PubMed ID: 17241033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes.
    Parshetti GK; Doong RA
    Water Res; 2009 Jul; 43(12):3086-94. PubMed ID: 19476967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonvolatile memory properties of Pt nanoparticle-embedded TiO(2) nanocomposite multilayers via electrostatic layer-by-layer assembly.
    Lee C; Kim I; Shin H; Kim S; Cho J
    Nanotechnology; 2010 May; 21(18):185704. PubMed ID: 20378950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdiffusion and surface-sandwich ordering in initial Ni-core-Pd-shell nanoparticle.
    Evteev AV; Levchenko EV; Belova IV; Murch GE
    Phys Chem Chem Phys; 2009 May; 11(17):3233-40. PubMed ID: 19370219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.
    Meric P; Yu KM; Tsang SC
    Langmuir; 2004 Sep; 20(20):8537-45. PubMed ID: 15379472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles.
    Wang G; Van Hove MA; Ross PN; Baskes MI
    J Chem Phys; 2005 Jan; 122(2):024706. PubMed ID: 15638613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition.
    Colak L; Hadjipanayis GC
    Nanotechnology; 2009 Dec; 20(48):485602. PubMed ID: 19880977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.