These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 182226)

  • 1. Studies on the interaction of propranolol with erythrocyte membranes.
    Godin DV; Ng TW; Tuchek JM
    Biochim Biophys Acta; 1976 Jul; 436(4):757-73. PubMed ID: 182226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium transport in human erythrocytes. Separation and reconstitution of high and low Ca affinity (Mg mca)-AT Pase activities in membranes prepared at low ionic strength.
    Quist EE; Roufogalis BD
    Arch Biochem Biophys; 1975 May; 168(1):240-51. PubMed ID: 124551
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. I. General properties of variously prepared membranes and the mechanism of the isosmotic imidazole effect.
    Farrance ML; Vincenzi FF
    Biochim Biophys Acta; 1977 Nov; 471(1):49-58. PubMed ID: 144528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular aspects of inhalational anaesthetic interaction with excitable and non-excitable membranes.
    Godin DV; Del Vicario G
    Can Anaesth Soc J; 1981 May; 28(3):201-9. PubMed ID: 7237213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between cytoplasmic (Ca2+--Mg2+) ATPase activator and the erythrocyte membrane.
    Vincenzi FF; Farrance ML
    J Supramol Struct; 1977; 7(3-4):301-6. PubMed ID: 151172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid compostition.
    Farías RN; Bloj B; Morero RD; Siñeriz F; Trucco RE
    Biochim Biophys Acta; 1975 Jun; 415(2):231-51. PubMed ID: 167865
    [No Abstract]   [Full Text] [Related]  

  • 7. Equilibrium binding of calcium to fragmented human red cell membranes and its relation to calcium-mediated effects on cation permeability.
    Porzig H; Stoffel D
    J Membr Biol; 1978 Apr; 40(2):117-42. PubMed ID: 26806
    [No Abstract]   [Full Text] [Related]  

  • 8. The nature of phospholipase C from Acinetobacter calcoaceticus: effects on whole red cells and red cell membranes.
    Lehmann V
    Acta Pathol Microbiol Scand B Microbiol Immunol; 1973 Aug; 81(4):419-26. PubMed ID: 4271908
    [No Abstract]   [Full Text] [Related]  

  • 9. The regulatory control of beta-receptor dependent adenylate cyclase.
    Levitzki A; Sevilla N; Steer ML
    J Supramol Struct; 1976; 4(3):405-18. PubMed ID: 1263515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. II. Dependence on calcium and a cytoplasmic activator.
    Farrance ML; Vincenzi FF
    Biochim Biophys Acta; 1977 Nov; 471(1):59-66. PubMed ID: 144529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trinitrobenzenesulfonic acid: a possible chemical probe to investigate lipid-protein interactions in biological membranes.
    Godin DV; Ng TW
    Mol Pharmacol; 1972 Jul; 8(4):426-37. PubMed ID: 5066169
    [No Abstract]   [Full Text] [Related]  

  • 12. Kinetics of (Na + ,K + )-ATPase of human erythrocyte membranes. I. Activation by Na + and K + .
    Peter HW; Wolf HU
    Biochim Biophys Acta; 1972 Dec; 290(1):300-9. PubMed ID: 4264469
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on a Ca 2+ -dependent ATPase of human erythrocyte membranes. Effects of Ca 2+ and H + .
    Wolf HU
    Biochim Biophys Acta; 1972 May; 266(2):361-75. PubMed ID: 4261006
    [No Abstract]   [Full Text] [Related]  

  • 14. Ligand-induced conformational changes in the (Mg 2+ + Ca 2+ )-dependent ATPase of red cell membranes.
    Bond GH
    Biochim Biophys Acta; 1972 Nov; 288(2):423-33. PubMed ID: 4263663
    [No Abstract]   [Full Text] [Related]  

  • 15. (Ca 2+ + Mg 2+ )-activated membrane ATPases in human red cells and their possible relations to cation transport.
    Schatzmann HJ; Rossi GL
    Biochim Biophys Acta; 1971 Aug; 241(2):379-92. PubMed ID: 4258479
    [No Abstract]   [Full Text] [Related]  

  • 16. Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities.
    Bramley TA; Coleman R; Finean JB
    Biochim Biophys Acta; 1971 Sep; 241(3):752-69. PubMed ID: 4258591
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrolysis of erythrocyte membrane phospholipids by a preparation of phospholipase C from Clostridium Welchii. Deactivation of (Ca-2+, Mg-2+)-ATPase and its reactivation by added lipids.
    Coleman R; Bramley TA
    Biochim Biophys Acta; 1975 Apr; 382(4):565-75. PubMed ID: 123773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbational effects of inorganic cations on human erythrocyte membranes.
    Godin DV; Garnett M
    J Membr Biol; 1976 Aug; 28(2-3):143-68. PubMed ID: 9513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ activation of membrane-bound (Ca2++Mg2+)-dependent ATPase from human erythrocytes prepared in the presence or absence of Ca2+.
    Scharff O
    Biochim Biophys Acta; 1976 Aug; 443(2):206-18. PubMed ID: 133727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca-2+-stimulated membrane phosphorylation and ATPase activity of the human erythrocyte.
    Katz S; Blostein R
    Biochim Biophys Acta; 1975 May; 389(2):314-24. PubMed ID: 124591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.