These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 18222797)

  • 1. Object-based 3-D reconstruction of arterial trees from magnetic resonance angiograms.
    Fessler JA; Macovski A
    IEEE Trans Med Imaging; 1991; 10(1):25-39. PubMed ID: 18222797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained iterative reconstruction by the conjugate gradient method.
    Kawata S; Nalcioglu O
    IEEE Trans Med Imaging; 1985; 4(2):65-71. PubMed ID: 18243953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D reconstruction of vascular structures from two X-ray angiograms using an adapted simulated annealing algorithm.
    Pellot C; Herment A; Sigelle M; Horain P; Maitre H; Peronneau P
    IEEE Trans Med Imaging; 1994; 13(1):48-60. PubMed ID: 18218483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data.
    Kaimovitz B; Lanir Y; Kassab GS
    Ann Biomed Eng; 2005 Nov; 33(11):1517-35. PubMed ID: 16341920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method of three-dimensional coronary artery reconstruction from X-ray angiography: validation against a virtual phantom and multislice computed tomography.
    Andriotis A; Zifan A; Gavaises M; Liatsis P; Pantos I; Theodorakakos A; Efstathopoulos EP; Katritsis D
    Catheter Cardiovasc Interv; 2008 Jan; 71(1):28-43. PubMed ID: 18098180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DART: a practical reconstruction algorithm for discrete tomography.
    Batenburg KJ; Sijbers J
    IEEE Trans Image Process; 2011 Sep; 20(9):2542-53. PubMed ID: 21435983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric boundary reconstruction algorithm for industrial CT metrology application.
    Yin Z; Khare K; De Man B
    J Xray Sci Technol; 2009; 17(2):115-33. PubMed ID: 19696466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast, robust total variation-based reconstruction of noisy, blurred images.
    Vogel CR; Oman ME
    IEEE Trans Image Process; 1998; 7(6):813-24. PubMed ID: 18276295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient path-based stereo matching with subpixel accuracy.
    Donate A; Liu X; Collins EG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):183-95. PubMed ID: 20570775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.
    Liu K; Warnow TJ; Holder MT; Nelesen SM; Yu J; Stamatakis AP; Linder CR
    Syst Biol; 2012 Jan; 61(1):90-106. PubMed ID: 22139466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic nonrigid calibration of image registration for real time MR-guided HIFU ablations of mobile organs.
    Roujol S; Ries M; Moonen C; de Senneville BD
    IEEE Trans Med Imaging; 2011 Oct; 30(10):1737-45. PubMed ID: 21550879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging.
    Gao H; Long Q; Graves M; Gillard JH; Li ZY
    J Magn Reson Imaging; 2009 Jul; 30(1):85-93. PubMed ID: 19557850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree.
    Chao WH; Chen YY; Cho CW; Lin SH; Shih YY; Tsang S
    J Neurosci Methods; 2008 Nov; 175(2):206-17. PubMed ID: 18786567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic and deformation analysis of 4-D coronary arterial trees reconstructed from cine angiograms.
    Chen SY; Carroll JD
    IEEE Trans Med Imaging; 2003 Jun; 22(6):710-21. PubMed ID: 12872946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian reconstruction and use of anatomical a priori information for emission tomography.
    Bowsher JE; Johnson VE; Turkington TG; Jaszczak RJ; Floyd CR; Coleman RE
    IEEE Trans Med Imaging; 1996; 15(5):673-86. PubMed ID: 18215949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural network approach for image reconstruction in electron magnetic resonance tomography.
    Durairaj DC; Krishna MC; Murugesan R
    Comput Biol Med; 2007 Oct; 37(10):1492-501. PubMed ID: 17362904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Level-set-based artery-vein separation in blood pool agent CE-MR angiograms.
    van Bemmel CM; Spreeuwers LJ; Viergever MA; Niessen WJ
    IEEE Trans Med Imaging; 2003 Oct; 22(10):1224-34. PubMed ID: 14552577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projection-based motion compensation for gated coronary artery reconstruction from rotational x-ray angiograms.
    Hansis E; Schäfer D; Dössel O; Grass M
    Phys Med Biol; 2008 Jul; 53(14):3807-20. PubMed ID: 18583730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.