These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Direct algorithm for digital image restoration. Abdelmalek NN; Kasvand T; Olmstead J; Tremblay MM Appl Opt; 1981 Dec; 20(24):4227-33. PubMed ID: 20372357 [TBL] [Abstract][Full Text] [Related]
5. Random search algorithm for solving the nonlinear Fredholm integral equations of the second kind. Hong Z; Yan Z; Yan J PLoS One; 2014; 9(7):e103068. PubMed ID: 25072373 [TBL] [Abstract][Full Text] [Related]
6. Diffuse optical tomography through solving a system of quadratic equations: theory and simulations. Kanmani B; Vasu RM Phys Med Biol; 2006 Feb; 51(4):981-98. PubMed ID: 16467591 [TBL] [Abstract][Full Text] [Related]
7. Numerical methods for inverse problems in electrooptics of polydisperse colloids. Babadzanjanz L; Voitylov A Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):121-5. PubMed ID: 17174534 [TBL] [Abstract][Full Text] [Related]
8. Numerical solutions in remote sensing. Wang JY; Goulard R Appl Opt; 1975 Apr; 14(4):862-71. PubMed ID: 20134991 [TBL] [Abstract][Full Text] [Related]
9. Spectral technique with convergence analysis for solving one and two-dimensional mixed Volterra-Fredholm integral equation. Amin AZ; Amin AK; Abdelkawy MA; Alluhaybi AA; Hashim I PLoS One; 2023; 18(5):e0283746. PubMed ID: 37235577 [TBL] [Abstract][Full Text] [Related]
10. Efficient reconstruction of dielectric objects based on integral equation approach with Gauss-Newton minimization. Tong MS; Yang K; Sheng WT; Zhu ZY IEEE Trans Image Process; 2013 Dec; 22(12):4930-7. PubMed ID: 23996559 [TBL] [Abstract][Full Text] [Related]
11. Digital image restoration using quadratic programming. Abdelmalek NN; Kasvand T Appl Opt; 1980 Oct; 19(19):3407-15. PubMed ID: 20234627 [TBL] [Abstract][Full Text] [Related]
13. Inversion of simulated evoked potentials to charge distribution inside the human brain using an algebraic reconstruction technique. Uzunoglu NK; Ventouras E; Papageorgiou C; Rabavilas A; Stefanis C IEEE Trans Med Imaging; 1991; 10(3):479-84. PubMed ID: 18222851 [TBL] [Abstract][Full Text] [Related]
14. Efficient solution of Poisson's equation using discrete variable representation basis sets for Car-Parrinello ab initio molecular dynamics simulations with cluster boundary conditions. Lee HS; Tuckerman ME J Chem Phys; 2008 Dec; 129(22):224108. PubMed ID: 19071908 [TBL] [Abstract][Full Text] [Related]
15. A new method to generate an almost-diagonal matrix in the boundary integral equation formulation. Chandrasekhar B; Rao SM J Acoust Soc Am; 2008 Dec; 124(6):3390-6. PubMed ID: 19206767 [TBL] [Abstract][Full Text] [Related]
16. Fast volumetric integral-equation solver for acoustic wave propagation through inhomogeneous media. Bleszynski E; Bleszynski M; Jaroszewicz T J Acoust Soc Am; 2008 Jul; 124(1):396-408. PubMed ID: 18646985 [TBL] [Abstract][Full Text] [Related]
17. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint. Cohen-Bacrie C; Goussard Y; Guardo R IEEE Trans Med Imaging; 1997 Oct; 16(5):562-71. PubMed ID: 9368111 [TBL] [Abstract][Full Text] [Related]
18. Hybrid boundary element and finite difference method for solving the nonlinear Poisson-Boltzmann equation. Boschitsch AH; Fenley MO J Comput Chem; 2004 May; 25(7):935-55. PubMed ID: 15027106 [TBL] [Abstract][Full Text] [Related]
19. Determination of depth-dependent diffraction data: a new approach. Broadhurst A; Rogers KD; Lowe TW; Lane DW Acta Crystallogr A; 2005 Jan; 61(Pt 1):139-46. PubMed ID: 15613761 [TBL] [Abstract][Full Text] [Related]
20. Fast volumetric integral-equation solver for high-contrast acoustics. Bleszynski E; Bleszynski M; Jaroszewicz T J Acoust Soc Am; 2008 Dec; 124(6):3684-93. PubMed ID: 19206796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]