These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1822293)

  • 61. Role for tyrosine kinases in contraction of rat penile small arteries.
    Villalba N; Kun A; Stankevicius E; Simonsen U
    J Sex Med; 2010 Jun; 7(6):2086-2095. PubMed ID: 20384943
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effect of phosphatases SHP-1 and SHIP-1 on signaling by the ITIM- and ITAM-containing Fcgamma receptors FcgammaRIIB and FcgammaRIIA.
    Huang ZY; Hunter S; Kim MK; Indik ZK; Schreiber AD
    J Leukoc Biol; 2003 Jun; 73(6):823-9. PubMed ID: 12773515
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Differential role of tyrosine phosphorylation in adhesion-induced transcription, mRNA stability, and cytoskeletal organization in human monocytes.
    Mondal K; Sirenko OI; Lofquist AK; Morris JS; Haskill JS; Watson JM
    J Leukoc Biol; 2000 Feb; 67(2):216-25. PubMed ID: 10670583
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways.
    Giannone G; Sheetz MP
    Trends Cell Biol; 2006 Apr; 16(4):213-23. PubMed ID: 16529933
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Direct suppression of TCR-mediated activation of extracellular signal-regulated kinase by leukocyte protein tyrosine phosphatase, a tyrosine-specific phosphatase.
    Oh-hora M; Ogata M; Mori Y; Adachi M; Imai K; Kosugi A; Hamaoka T
    J Immunol; 1999 Aug; 163(3):1282-8. PubMed ID: 10415025
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fyn and PTP-PEST-mediated regulation of Wiskott-Aldrich syndrome protein (WASp) tyrosine phosphorylation is required for coupling T cell antigen receptor engagement to WASp effector function and T cell activation.
    Badour K; Zhang J; Shi F; Leng Y; Collins M; Siminovitch KA
    J Exp Med; 2004 Jan; 199(1):99-112. PubMed ID: 14707117
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Essential function of PTP-PEST during mouse embryonic vascularization, mesenchyme formation, neurogenesis and early liver development.
    Sirois J; Côté JF; Charest A; Uetani N; Bourdeau A; Duncan SA; Daniels E; Tremblay ML
    Mech Dev; 2006 Dec; 123(12):869-80. PubMed ID: 17070019
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).
    Wheadon H; Edmead C; Welham MJ
    Biochem J; 2003 Nov; 376(Pt 1):147-57. PubMed ID: 12935294
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reduced NMDA receptor tyrosine phosphorylation in PTPalpha-deficient mouse synaptosomes is accompanied by inhibition of four src family kinases and Pyk2: an upstream role for PTPalpha in NMDA receptor regulation.
    Le HT; Maksumova L; Wang J; Pallen CJ
    J Neurochem; 2006 Sep; 98(6):1798-809. PubMed ID: 16899073
    [TBL] [Abstract][Full Text] [Related]  

  • 70. TNF-alpha induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex.
    Bode JG; Schweigart J; Kehrmann J; Ehlting C; Schaper F; Heinrich PC; Häussinger D
    J Immunol; 2003 Jul; 171(1):257-66. PubMed ID: 12817006
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A protein tyrosine kinase modulates GABAA receptor in frog pituitary melanotrope cells.
    Castel H; Louiset E; Vaudry H; Cazin L
    Ann N Y Acad Sci; 1998 May; 839():74-9. PubMed ID: 9629133
    [No Abstract]   [Full Text] [Related]  

  • 72. Differing mechanisms of cAMP- versus seawater-induced oocyte maturation in marine nemertean worms I. The roles of serine/threonine kinases and phosphatases.
    Stricker SA; Smythe TL
    Mol Reprod Dev; 2006 Dec; 73(12):1578-90. PubMed ID: 16902952
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of protein tyrosine phosphatases in prostate cancer biology.
    Nunes-Xavier CE; Mingo J; López JI; Pulido R
    Biochim Biophys Acta Mol Cell Res; 2019 Jan; 1866(1):102-113. PubMed ID: 30401533
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Protein Tyrosine Phosphatases in Systemic Sclerosis: Potential Pathogenic Players and Therapeutic Targets.
    Sacchetti C; Bottini N
    Curr Rheumatol Rep; 2017 May; 19(5):28. PubMed ID: 28397126
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The roles of protein tyrosine phosphatases in bone-resorbing osteoclasts.
    Shalev M; Elson A
    Biochim Biophys Acta Mol Cell Res; 2019 Jan; 1866(1):114-123. PubMed ID: 30026076
    [TBL] [Abstract][Full Text] [Related]  

  • 76. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases.
    Guntermann C; Alexander DR
    J Immunol; 2002 May; 168(9):4420-9. PubMed ID: 11970985
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Serine/threonine kinases in the nervous system.
    Schulman H
    Curr Opin Neurobiol; 1991 Jun; 1(1):43-52. PubMed ID: 1840405
    [TBL] [Abstract][Full Text] [Related]  

  • 78. More than reverting tyrosine kinases.
    Heemskerk JWM
    Blood; 2022 Sep; 140(9):939-941. PubMed ID: 36048474
    [No Abstract]   [Full Text] [Related]  

  • 79. Clues to the evolution of complex signaling machinery.
    Mayer BJ
    Proc Natl Acad Sci U S A; 2008 Jul; 105(28):9453-4. PubMed ID: 18621723
    [No Abstract]   [Full Text] [Related]  

  • 80. Regulation and function of protein kinases and phosphatases.
    Cheng HC; Qi RZ; Paudel H; Zhu HJ
    Enzyme Res; 2011; 2011():794089. PubMed ID: 22195276
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.