These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 18223071)
1. Cyclic AMP-dependent catabolite repression is the dominant control mechanism of metabolic fluxes under glucose limitation in Escherichia coli. Nanchen A; Schicker A; Revelles O; Sauer U J Bacteriol; 2008 Apr; 190(7):2323-30. PubMed ID: 18223071 [TBL] [Abstract][Full Text] [Related]
2. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. Perrenoud A; Sauer U J Bacteriol; 2005 May; 187(9):3171-9. PubMed ID: 15838044 [TBL] [Abstract][Full Text] [Related]
3. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Haverkorn van Rijsewijk BR; Nanchen A; Nallet S; Kleijn RJ; Sauer U Mol Syst Biol; 2011 Mar; 7():477. PubMed ID: 21451587 [TBL] [Abstract][Full Text] [Related]
4. Catabolic regulation analysis of Escherichia coli and its crp, mlc, mgsA, pgi and ptsG mutants. Yao R; Hirose Y; Sarkar D; Nakahigashi K; Ye Q; Shimizu K Microb Cell Fact; 2011 Aug; 10():67. PubMed ID: 21831320 [TBL] [Abstract][Full Text] [Related]
5. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. Fischer E; Sauer U J Biol Chem; 2003 Nov; 278(47):46446-51. PubMed ID: 12963713 [TBL] [Abstract][Full Text] [Related]
6. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Yang C; Hua Q; Baba T; Mori H; Shimizu K Biotechnol Bioeng; 2003 Oct; 84(2):129-44. PubMed ID: 12966569 [TBL] [Abstract][Full Text] [Related]
8. Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). Waegeman H; Beauprez J; Moens H; Maertens J; De Mey M; Foulquié-Moreno MR; Heijnen JJ; Charlier D; Soetaert W BMC Microbiol; 2011 Apr; 11():70. PubMed ID: 21481254 [TBL] [Abstract][Full Text] [Related]
9. Glucose repression of the Escherichia coli sdhCDAB operon, revisited: regulation by the CRP*cAMP complex. Nam TW; Park YH; Jeong HJ; Ryu S; Seok YJ Nucleic Acids Res; 2005; 33(21):6712-22. PubMed ID: 16314304 [TBL] [Abstract][Full Text] [Related]
10. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures. Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Kumar R; Shimizu K Microb Cell Fact; 2011 Jan; 10():3. PubMed ID: 21272324 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation. Gulati A; Mahadevan S Genes Cells; 2000 Apr; 5(4):239-50. PubMed ID: 10792463 [TBL] [Abstract][Full Text] [Related]
13. Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. Nikel PI; Zhu J; San KY; Méndez BS; Bennett GN J Bacteriol; 2009 Sep; 191(17):5538-48. PubMed ID: 19561129 [TBL] [Abstract][Full Text] [Related]
14. Regulation of Aerobic Succinate Transporter dctA of E. coli by cAMP-CRP, DcuS-DcuR, and EIIAGlc: Succinate as a Carbon Substrate and Signaling Molecule. Schubert C; Unden G Microb Physiol; 2024; 34(1):108-120. PubMed ID: 38432210 [TBL] [Abstract][Full Text] [Related]
15. Extracellular Acidic pH Inhibits Acetate Consumption by Decreasing Gene Transcription of the Tricarboxylic Acid Cycle and the Glyoxylate Shunt. Orr JS; Christensen DG; Wolfe AJ; Rao CV J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30348831 [No Abstract] [Full Text] [Related]
16. Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Nanchen A; Schicker A; Sauer U Appl Environ Microbiol; 2006 Feb; 72(2):1164-72. PubMed ID: 16461663 [TBL] [Abstract][Full Text] [Related]
17. Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. Bettenbrock K; Sauter T; Jahreis K; Kremling A; Lengeler JW; Gilles ED J Bacteriol; 2007 Oct; 189(19):6891-900. PubMed ID: 17675376 [TBL] [Abstract][Full Text] [Related]
18. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Meza E; Becker J; Bolivar F; Gosset G; Wittmann C Microb Cell Fact; 2012 Sep; 11():127. PubMed ID: 22973998 [TBL] [Abstract][Full Text] [Related]
19. Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Zhu J; Shalel-Levanon S; Bennett G; San KY Metab Eng; 2006 Nov; 8(6):619-27. PubMed ID: 16962353 [TBL] [Abstract][Full Text] [Related]
20. Metabolic regulation of an fnr gene knockout Escherichia coli under oxygen limitation. Marzan LW; Siddiquee KA; Shimizu K Bioeng Bugs; 2011; 2(6):331-7. PubMed ID: 22008943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]