These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18223083)

  • 1. Residues near the amino terminus of Rns are essential for positive autoregulation and DNA binding.
    Basturea GN; Bodero MD; Moreno ME; Munson GP
    J Bacteriol; 2008 Apr; 190(7):2279-85. PubMed ID: 18223083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucines 193 and 194 at the N-terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta-cleavage pathway, are involved in dimerization.
    Ruíz R; Marqués S; Ramos JL
    J Bacteriol; 2003 May; 185(10):3036-41. PubMed ID: 12730162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation.
    Griffith KL; Wolf RE
    J Mol Biol; 2002 Sep; 322(2):237-57. PubMed ID: 12217688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulation of subclass 5b fimbriae.
    Bodero MD; Harden EA; Munson GP
    BMC Microbiol; 2008 Oct; 8():180. PubMed ID: 18854044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the N-terminal domain of UreR, the positive transcriptional regulator of urease gene expression.
    Parra MC; Collins CM
    Microbiol Res; 2012 Jul; 167(7):433-44. PubMed ID: 22537874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional domains of the TOL plasmid transcription factor XylS.
    Kaldalu N; Toots U; de Lorenzo V; Ustav M
    J Bacteriol; 2000 Feb; 182(4):1118-26. PubMed ID: 10648539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric regulation within the highly interconnected structural scaffold of AraC/XylS homologs tolerates a wide range of amino acid changes.
    Picard HR; Schwingen KS; Green LM; Shis DL; Egan SM; Bennett MR; Swint-Kruse L
    Proteins; 2022 Jan; 90(1):186-199. PubMed ID: 34369028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of the Rns regulator of enterotoxigenic Escherichia coli reveals roles for a linker sequence and two helix-turn-helix motifs.
    Mahon V; Smyth CJ; Smith SGJ
    Microbiology (Reading); 2010 Sep; 156(Pt 9):2796-2806. PubMed ID: 20507887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rns, a virulence regulator within the AraC family, requires binding sites upstream and downstream of its own promoter to function as an activator.
    Munson GP; Scott JR
    Mol Microbiol; 2000 Jun; 36(6):1391-402. PubMed ID: 10931289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus.
    Yamazaki H; Tomono A; Ohnishi Y; Horinouchi S
    Mol Microbiol; 2004 Jul; 53(2):555-72. PubMed ID: 15228534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding site recognition by Rns, a virulence regulator in the AraC family.
    Munson GP; Scott JR
    J Bacteriol; 1999 Apr; 181(7):2110-7. PubMed ID: 10094688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active role of the interdomain linker of AraC.
    Seedorff J; Schleif R
    J Bacteriol; 2011 Oct; 193(20):5737-46. PubMed ID: 21840981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR.
    Kolin A; Balasubramaniam V; Skredenske JM; Wickstrum JR; Egan SM
    Mol Microbiol; 2008 Apr; 68(2):448-61. PubMed ID: 18366439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large family of anti-activators accompanying XylS/AraC family regulatory proteins.
    Santiago AE; Yan MB; Tran M; Wright N; Luzader DH; Kendall MM; Ruiz-Perez F; Nataro JP
    Mol Microbiol; 2016 Jul; 101(2):314-32. PubMed ID: 27038276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators.
    Manzanera M; Marqués S; Ramos JL
    FEBS Lett; 2000 Jul; 476(3):312-7. PubMed ID: 10913634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional domains of the InsA protein of IS2.
    Lei GS; Hu ST
    J Bacteriol; 1997 Oct; 179(20):6238-43. PubMed ID: 9335268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Functional Analysis of the Signal-Transducing Linker in the pH-Responsive One-Component System CadC of Escherichia coli.
    Buchner S; Schlundt A; Lassak J; Sattler M; Jung K
    J Mol Biol; 2015 Jul; 427(15):2548-2561. PubMed ID: 25979249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel protein--protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress.
    Shah IM; Wolf RE
    J Mol Biol; 2004 Oct; 343(3):513-32. PubMed ID: 15465042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ler interdomain linker is essential for anti-silencing activity in enteropathogenic Escherichia coli.
    Mellies JL; Larabee FJ; Zarr MA; Horback KL; Lorenzen E; Mavor D
    Microbiology (Reading); 2008 Dec; 154(Pt 12):3624-3638. PubMed ID: 19047730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snap denaturation reveals dimerization by AraC-like protein Rns.
    Mahon V; Fagan RP; Smith SG
    Biochimie; 2012 Sep; 94(9):2058-61. PubMed ID: 22627379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.