BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 18223191)

  • 1. Rho kinase is involved in Ca2+ entry of rat penile small arteries.
    Villalba N; Stankevicius E; Simonsen U; Prieto D
    Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1923-32. PubMed ID: 18223191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of both Ca2+ entry and Ca2+ sensitization to the alpha1-adrenergic vasoconstriction of rat penile small arteries.
    Villalba N; Stankevicius E; Garcia-Sacristán A; Simonsen U; Prieto D
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H1157-69. PubMed ID: 17085536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired Ca2+ handling in penile arteries from prediabetic Zucker rats: involvement of Rho kinase.
    Villalba N; Contreras C; Hernández M; García-Sacristán A; Prieto D
    Am J Physiol Heart Circ Physiol; 2011 Jun; 300(6):H2044-53. PubMed ID: 21297020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries.
    Ghisdal P; Vandenberg G; Morel N
    J Physiol; 2003 Sep; 551(Pt 3):855-67. PubMed ID: 12853654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms Involved in Thromboxane A
    Grann M; Comerma-Steffensen S; Arcanjo DD; Simonsen U
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():86-95. PubMed ID: 26708952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of capacitative Ca2+ influx in the alpha 1B-adrenoceptor-mediated contraction to phenylephrine of the rat spleen.
    Burt RP; Chapple CR; Marshall I
    Br J Pharmacol; 1995 Oct; 116(4):2327-33. PubMed ID: 8564268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role for tyrosine kinases in contraction of rat penile small arteries.
    Villalba N; Kun A; Stankevicius E; Simonsen U
    J Sex Med; 2010 Jun; 7(6):2086-2095. PubMed ID: 20384943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Rho-kinase in guinea-pig gallbladder smooth muscle contraction.
    Quinn T; Feighery R; Baird AW
    Eur J Pharmacol; 2006 Mar; 534(1-3):210-7. PubMed ID: 16499905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential contribution of calcium channels to α
    Ishida H; Saito SY; Hishinuma E; Kitayama T; Ishikawa T
    Eur J Pharmacol; 2018 May; 826():9-16. PubMed ID: 29458039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabotropic regulation of RhoA/Rho-associated kinase by L-type Ca2+ channels: new mechanism for depolarization-evoked mammalian arterial contraction.
    Fernández-Tenorio M; Porras-González C; Castellano A; Del Valle-Rodríguez A; López-Barneo J; Ureña J
    Circ Res; 2011 May; 108(11):1348-57. PubMed ID: 21493898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Salt Intake Augments the Activity of the RhoA/ROCK Pathway and Reduces Intracellular Calcium in Arteries From Rats.
    Crestani S; Webb RC; da Silva-Santos JE
    Am J Hypertens; 2017 Apr; 30(4):389-399. PubMed ID: 28164209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct pathways of Ca(2+) sensitization in porcine coronary artery: effects of Rho-related kinase and protein kinase C inhibition on force and intracellular Ca(2+).
    Nobe K; Paul RJ
    Circ Res; 2001 Jun; 88(12):1283-90. PubMed ID: 11420305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Phosphatidylinositol 3-Kinase (PI3K), Mitogen-Activated Protein Kinase (MAPK), and Protein Kinase C (PKC) in Calcium Signaling Pathways Linked to the α
    Gutiérrez A; Contreras C; Sánchez A; Prieto D
    Front Physiol; 2019; 10():55. PubMed ID: 30787881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attenuation of contractility in rat epididymal vas deferens by Rho kinase inhibitors.
    Amobi NI; Chung IP; Smith IC
    Auton Autacoid Pharmacol; 2006 Apr; 26(2):169-81. PubMed ID: 16553645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of the Rho-kinase inhibitor Y-27632 on arachidonic acid-, GTPgammaS-, and phorbol ester-induced Ca2+-sensitization of smooth muscle.
    Fu X; Gong MC; Jia T; Somlyo AV; Somlyo AP
    FEBS Lett; 1998 Nov; 440(1-2):183-7. PubMed ID: 9862451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular Ca2+ silences L-type Ca2+ channels in mesenteric veins: mechanism of venous smooth muscle resistance to calcium channel blockers.
    Thakali KM; Kharade SV; Sonkusare SK; Rhee SW; Stimers JR; Rusch NJ
    Circ Res; 2010 Mar; 106(4):739-47. PubMed ID: 20044515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of RhoA/ROCK and sustained arterial contraction by low cytosolic Ca
    Porras-González C; Ordóñez A; Castellano A; Ureña J
    Vascul Pharmacol; 2017 Aug; 93-95():33-41. PubMed ID: 28526517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rho kinase inhibitors reduce voltage-dependent Ca
    Guan Z; Baty JJ; Zhang S; Remedies CE; Inscho EW
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1132-F1141. PubMed ID: 31432708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for capacitative and non-capacitative Ca2+ entry pathways coexist in A10 vascular smooth muscle cells.
    Zhou JG; Qiu QY; Zhang Z; Liu YJ; Guan YY
    Life Sci; 2006 Feb; 78(14):1558-63. PubMed ID: 16236332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation by GDI of RhoA/Rho-kinase-induced Ca2+ sensitization of smooth muscle myosin II.
    Gong MC; Gorenne I; Read P; Jia T; Nakamoto RK; Somlyo AV; Somlyo AP
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C257-69. PubMed ID: 11401849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.