These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18223445)

  • 1. Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants.
    Büchner A; Nogueira W; Edler B; Battmer RD; Lenarz T
    Otol Neurotol; 2008 Feb; 29(2):189-92. PubMed ID: 18223445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current steering and results from novel speech coding strategies.
    Buechner A; Brendel M; Krüeger B; Frohne-Büchner C; Nogueira W; Edler B; Lenarz T
    Otol Neurotol; 2008 Feb; 29(2):203-7. PubMed ID: 18223448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subjective and objective results after bilateral cochlear implantation in adults.
    Laske RD; Veraguth D; Dillier N; Binkert A; Holzmann D; Huber AM
    Otol Neurotol; 2009 Apr; 30(3):313-8. PubMed ID: 19318885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Harmony soundprocessor in combination with the speech coding strategy HiRes 120.
    Brendel M; Buechner A; Krueger B; Frohne-Buechner C; Lenarz T
    Otol Neurotol; 2008 Feb; 29(2):199-202. PubMed ID: 18223447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices.
    Spahr AJ; Dorman MF
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):624-8. PubMed ID: 15148187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontal-plane localization of noise and speech signals by postlingually deafened adults fitted with bilateral cochlear implants.
    Grantham DW; Ashmead DH; Ricketts TA; Labadie RF; Haynes DS
    Ear Hear; 2007 Aug; 28(4):524-41. PubMed ID: 17609614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
    Plant K; Holden L; Skinner M; Arcaroli J; Whitford L; Law MA; Nel E
    Ear Hear; 2007 Jun; 28(3):381-93. PubMed ID: 17485987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R; Magnavita V; De Filippi R; Ventura L; Genovese E; Arslan E
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech perception with the ACE and the SPEAK speech coding strategies for children implanted with the Nucleus cochlear implant.
    Manrique M; Huarte A; Morera C; Caballé L; Ramos A; Castillo C; García-Ibáñez L; Estrada E; Juan E
    Int J Pediatr Otorhinolaryngol; 2005 Dec; 69(12):1667-74. PubMed ID: 16168497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Mandarin tone and speech perception between advanced combination encoder and continuous interleaved sampling speech-processing strategies in children.
    Hwang CF; Chen HC; Yang CH; Peng JP; Weng CH
    Am J Otolaryngol; 2012; 33(3):338-44. PubMed ID: 21982716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of two frequency-to-electrode maps for acoustic-electric stimulation.
    Simpson A; McDermott HJ; Dowell RC; Sucher C; Briggs RJ
    Int J Audiol; 2009 Feb; 48(2):63-73. PubMed ID: 19219690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech recognition with the advanced combination encoder and transient emphasis spectral maxima strategies in nucleus 24 recipients.
    Holden LK; Vandali AE; Skinner MW; Fourakis MS; Holden TA
    J Speech Lang Hear Res; 2005 Jun; 48(3):681-701. PubMed ID: 16197281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K; Loizou PC
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using genetic algorithms with subjective input from human subjects: implications for fitting hearing aids and cochlear implants.
    Başkent D; Eiler CL; Edwards B
    Ear Hear; 2007 Jun; 28(3):370-80. PubMed ID: 17485986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What matched comparisons can and cannot tell us: the case of cochlear implants.
    Sagi E; Fitzgerald MB; Svirsky MA
    Ear Hear; 2007 Aug; 28(4):571-9. PubMed ID: 17609617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speech and music perception with the new fine structure speech coding strategy: preliminary results.
    Arnoldner C; Riss D; Brunner M; Durisin M; Baumgartner WD; Hamzavi JS
    Acta Otolaryngol; 2007 Dec; 127(12):1298-303. PubMed ID: 17851892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Across-frequency delays based on the cochlear traveling wave: enhanced speech presentation for cochlear implants.
    Taft DA; Grayden DB; Burkitt AN
    IEEE Trans Biomed Eng; 2010 Mar; 57(3):596-606. PubMed ID: 19846368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding frequency modulation to improve cochlear implant performance in noise.
    Nie K; Stickney G; Zeng FG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):64-73. PubMed ID: 15651565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prognostic value of round-window psychophysical testing with cochlear-implant candidates.
    Shipp DB; Nedzelski JM
    J Otolaryngol; 1994 Jun; 23(3):172-6. PubMed ID: 8064955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.