BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 18223646)

  • 1. Small-molecule aggregates inhibit amyloid polymerization.
    Feng BY; Toyama BH; Wille H; Colby DW; Collins SR; May BC; Prusiner SB; Weissman J; Shoichet BK
    Nat Chem Biol; 2008 Mar; 4(3):197-9. PubMed ID: 18223646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregator compounds confound amyloid fibrillization assay.
    Rishton GM
    Nat Chem Biol; 2008 Mar; 4(3):159-60. PubMed ID: 18277973
    [No Abstract]   [Full Text] [Related]  

  • 3. Countering amyloid polymorphism and drug resistance with minimal drug cocktails.
    Duennwald ML; Shorter J
    Prion; 2010; 4(4):244-51. PubMed ID: 20935457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synergistic small-molecule combination directly eradicates diverse prion strain structures.
    Roberts BE; Duennwald ML; Wang H; Chung C; Lopreiato NP; Sweeny EA; Knight MN; Shorter J
    Nat Chem Biol; 2009 Dec; 5(12):936-46. PubMed ID: 19915541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of the aggregation kinetics of Sup35 and Ure2p yeast prions.
    Sabaté R; Villar-Piqué A; Espargaró A; Ventura S
    Biomacromolecules; 2012 Feb; 13(2):474-83. PubMed ID: 22176525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting steep dose-response curves in early inhibitor discovery.
    Shoichet BK
    J Med Chem; 2006 Dec; 49(25):7274-7. PubMed ID: 17149857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities.
    Shorter J; Lindquist S
    Mol Cell; 2006 Aug; 23(3):425-38. PubMed ID: 16885031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of aggregation of the Rnq1 prion domain and cross-seeding interactions with Sup35NM.
    Vitrenko YA; Gracheva EO; Richmond JE; Liebman SW
    J Biol Chem; 2007 Jan; 282(3):1779-87. PubMed ID: 17121829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of detergent on "promiscuous" inhibitors.
    Ryan AJ; Gray NM; Lowe PN; Chung CW
    J Med Chem; 2003 Jul; 46(16):3448-51. PubMed ID: 12877581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro assay for fragmentation of amyloid fibers of yeast prion protein.
    Inoue Y; Yoshida M
    Methods; 2006 May; 39(1):56-60. PubMed ID: 16750392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amyloid properties of the yeast cell wall protein Toh1 and its interaction with prion proteins Rnq1 and Sup35.
    Sergeeva AV; Sopova JV; Belashova TA; Siniukova VA; Chirinskaite AV; Galkin AP; Zadorsky SP
    Prion; 2019 Jan; 13(1):21-32. PubMed ID: 30558459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro analysis of SpUre2p, a prion-related protein, exemplifies the relationship between amyloid and prion.
    Immel F; Jiang Y; Wang YQ; Marchal C; Maillet L; Perrett S; Cullin C
    J Biol Chem; 2007 Mar; 282(11):7912-20. PubMed ID: 17234629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.
    MacLea KS; Paul KR; Ben-Musa Z; Waechter A; Shattuck JE; Gruca M; Ross ED
    Mol Cell Biol; 2015 Mar; 35(5):899-911. PubMed ID: 25547291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physical dimensions of amyloid aggregates control their infective potential as prion particles.
    Marchante R; Beal DM; Koloteva-Levine N; Purton TJ; Tuite MF; Xue WF
    Elife; 2017 Sep; 6():. PubMed ID: 28880146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and selective elimination of specific prions and amyloids by 4,5-dianilinophthalimide and analogs.
    Wang H; Duennwald ML; Roberts BE; Rozeboom LM; Zhang YL; Steele AD; Krishnan R; Su LJ; Griffin D; Mukhopadhyay S; Hennessy EJ; Weigele P; Blanchard BJ; King J; Deniz AA; Buchwald SL; Ingram VM; Lindquist S; Shorter J
    Proc Natl Acad Sci U S A; 2008 May; 105(20):7159-64. PubMed ID: 18480256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation seed size determines amyloid clearance and establishes a barrier to prion appearance in yeast.
    Villali J; Dark J; Brechtel TM; Pei F; Sindi SS; Serio TR
    Nat Struct Mol Biol; 2020 Jun; 27(6):540-549. PubMed ID: 32367069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
    Liu S; Hossinger A; Hofmann JP; Denner P; Vorberg IM
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.