These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 18223659)

  • 21. Functional relevance of AcrB Trimerization in pump assembly and substrate binding.
    Lu W; Zhong M; Chai Q; Wang Z; Yu L; Wei Y
    PLoS One; 2014; 9(2):e89143. PubMed ID: 24551234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational study of correlated domain motions in the AcrB efflux transporter.
    Schulz R; Vargiu AV; Ruggerone P; Kleinekathöfer U
    Biomed Res Int; 2015; 2015():487298. PubMed ID: 25685792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.
    Törnroth-Horsefield S; Gourdon P; Horsefield R; Brive L; Yamamoto N; Mori H; Snijder A; Neutze R
    Structure; 2007 Dec; 15(12):1663-73. PubMed ID: 18073115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between AcrB trimer association affinity and efflux activity.
    Ye C; Wang Z; Lu W; Zhong M; Chai Q; Wei Y
    Biochemistry; 2014 Jun; 53(23):3738-46. PubMed ID: 24854514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-directed mutagenesis reveals amino acid residues in the Escherichia coli RND efflux pump AcrB that confer macrolide resistance.
    Wehmeier C; Schuster S; Fähnrich E; Kern WV; Bohnert JA
    Antimicrob Agents Chemother; 2009 Jan; 53(1):329-30. PubMed ID: 18936189
    [No Abstract]   [Full Text] [Related]  

  • 26. A novel packing arrangement of AcrB in the lipid bilayer membrane.
    Ly K; Bartho JD; Eicher T; Pos KM; Mitra AK
    FEBS Lett; 2014 Dec; 588(24):4776-83. PubMed ID: 25451234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug transport mechanism of the AcrB efflux pump.
    Pos KM
    Biochim Biophys Acta; 2009 May; 1794(5):782-93. PubMed ID: 19166984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalently Linked Trimers of RND (Resistance-Nodulation-Division) Efflux Transporters to Study Their Mechanism of Action: Escherichia coli AcrB Multidrug Exporter as an Example.
    Nikaido H
    Methods Mol Biol; 2018; 1700():147-165. PubMed ID: 29177830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations.
    Vargiu AV; Collu F; Schulz R; Pos KM; Zacharias M; Kleinekathöfer U; Ruggerone P
    J Am Chem Soc; 2011 Jul; 133(28):10704-7. PubMed ID: 21707050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations.
    Feng Z; Hou T; Li Y
    Mol Biosyst; 2012 Oct; 8(10):2699-709. PubMed ID: 22825052
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the Dynamics of AcrB Through Disulfide Bond Formation.
    Rajapaksha P; Pandeya A; Wei Y
    ACS Omega; 2020 Sep; 5(34):21844-21852. PubMed ID: 32905396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump.
    Elkins CA; Nikaido H
    J Bacteriol; 2003 Sep; 185(18):5349-56. PubMed ID: 12949086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pseudo-atomic structure of an RND-type tripartite multidrug efflux pump.
    Du D; Voss J; Wang Z; Chiu W; Luisi BF
    Biol Chem; 2015 Sep; 396(9-10):1073-82. PubMed ID: 25803077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Allosteric drug transport mechanism of multidrug transporter AcrB.
    Tam HK; Foong WE; Oswald C; Herrmann A; Zeng H; Pos KM
    Nat Commun; 2021 Jun; 12(1):3889. PubMed ID: 34188038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of a transmembrane drug-efflux pump from Gram-negative bacteria.
    Fernandez-Recio J; Walas F; Federici L; Venkatesh Pratap J; Bavro VN; Miguel RN; Mizuguchi K; Luisi B
    FEBS Lett; 2004 Dec; 578(1-2):5-9. PubMed ID: 15581607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-directed disulfide cross-linking to probe conformational changes of a transporter during its functional cycle: Escherichia coli AcrB multidrug exporter as an example.
    Takatsuka Y; Nikaido H
    Methods Mol Biol; 2010; 634():343-54. PubMed ID: 20676995
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments.
    Yao XQ; Kimura N; Murakami S; Takada S
    J Am Chem Soc; 2013 May; 135(20):7474-85. PubMed ID: 23627437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single nucleotide polymorphism analysis of the major tripartite multidrug efflux pump of Escherichia coli: functional conservation in disparate animal reservoirs despite exposure to antimicrobial chemotherapy.
    Elkins CA; Mullis LB; Lacher DW; Jung CM
    Antimicrob Agents Chemother; 2010 Mar; 54(3):1007-15. PubMed ID: 20038628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AcrB trimer stability and efflux activity, insight from mutagenesis studies.
    Yu L; Lu W; Wei Y
    PLoS One; 2011; 6(12):e28390. PubMed ID: 22163011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump.
    Yue Z; Chen W; Zgurskaya HI; Shen J
    J Chem Theory Comput; 2017 Dec; 13(12):6405-6414. PubMed ID: 29117682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.