These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 18223764)
1. Sensitivity of a lidar inversion algorithm to parameters relating atmospheric backscatter and extinction. Hughes HG; Ferguson JA; Stephens DH Appl Opt; 1985 Jun; 24(11):1609-13. PubMed ID: 18223764 [TBL] [Abstract][Full Text] [Related]
2. Error analysis for the lidar backward inversion algorithm. Rocadenbosch F; Comerón A Appl Opt; 1999 Jul; 38(21):4461-74. PubMed ID: 18323930 [TBL] [Abstract][Full Text] [Related]
3. Inversion of lidar signals with the slope method. Kunz GJ; de Leeuw G Appl Opt; 1993 Jun; 32(18):3249-56. PubMed ID: 20829941 [TBL] [Abstract][Full Text] [Related]
4. Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique. Mei L; Guan P; Yang Y; Kong Z Opt Express; 2017 Aug; 25(16):A628-A638. PubMed ID: 29041035 [TBL] [Abstract][Full Text] [Related]
5. Lidar inversion of atmospheric backscatter and extinction-to-backscatter ratios by use of a Kalman filter. Rocadenbosch F; Soriano C; Comerón A; Baldasano JM Appl Opt; 1999 May; 38(15):3175-89. PubMed ID: 18319906 [TBL] [Abstract][Full Text] [Related]
6. Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios. Kovalev VA Appl Opt; 1993 Oct; 32(30):6053-65. PubMed ID: 20856432 [TBL] [Abstract][Full Text] [Related]
10. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data. Chemyakin E; Müller D; Burton S; Kolgotin A; Hostetler C; Ferrare R Appl Opt; 2014 Nov; 53(31):7252-66. PubMed ID: 25402885 [TBL] [Abstract][Full Text] [Related]
11. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection. Sun G; Qin L; Hou Z; Jing X; He F; Tan F; Zhang S Opt Express; 2018 Mar; 26(6):7423-7436. PubMed ID: 29609297 [TBL] [Abstract][Full Text] [Related]
12. Transmission as an input boundary value for an analytical solution of a single-scatter lidar equation. Kunz GJ Appl Opt; 1996 Jun; 35(18):3255-60. PubMed ID: 21102710 [TBL] [Abstract][Full Text] [Related]
13. Distortion of particulate extinction profiles measured with lidar in a two-component atmosphere. Kovalev VA; Moosmüller H Appl Opt; 1994 Sep; 33(27):6499-507. PubMed ID: 20941187 [TBL] [Abstract][Full Text] [Related]
16. Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. Pappalardo G; Amodeo A; Pandolfi M; Wandinger U; Ansmann A; Bösenberg J; Matthias V; Amiridis V; De Tomasi F; Frioud M; Larlori M; Komguem L; Papayannis A; Rocadenbosch F; Wang X Appl Opt; 2004 Oct; 43(28):5370-85. PubMed ID: 15495429 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of the lidar solution to errors of the aerosol backscatter-to-extinction ratio: influence of a monotonic change in the aerosol extinction coefficient. Kovalev VA Appl Opt; 1995 Jun; 34(18):3457-62. PubMed ID: 21052160 [TBL] [Abstract][Full Text] [Related]
18. Two-wavelength lidar inversion algorithm for a two-component atmosphere with variable extinction-to-backscatter ratios. Ackermann J Appl Opt; 1998 May; 37(15):3164-71. PubMed ID: 18273264 [TBL] [Abstract][Full Text] [Related]
19. Iterative method for the inversion of multiwavelength lidar signals to determine aerosol size distribution. Rajeev K; Parameswaran K Appl Opt; 1998 Jul; 37(21):4690-700. PubMed ID: 18285926 [TBL] [Abstract][Full Text] [Related]
20. Bipath method as a way to measure the spatial backscatter and extinction coefficients with lidar. Kunz GJ Appl Opt; 1987 Mar; 26(5):794-5. PubMed ID: 20454225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]