These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18225338)

  • 1. Robots to the rescue in stroke rehab.
    Johns Hopkins Med Lett Health After 50; 2007 Dec; 19(10):3, 7. PubMed ID: 18225338
    [No Abstract]   [Full Text] [Related]  

  • 2. Rehabilitation and plasticity.
    Luft AR
    Front Neurol Neurosci; 2013; 32():88-94. PubMed ID: 23859967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental robotics: manifesto and application.
    Elliott T; Shadbolt NR
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2187-206. PubMed ID: 14599315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of added inertia on the pelvis on gait.
    Meuleman J; Terpstra W; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975493. PubMed ID: 22275690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Getting a leg up? Rehab patients get an assist from devices such as HealthSouth's AutoAmbulator, but the robots' clinical benefits are still in doubt.
    Mantone J
    Mod Healthc; 2006 Feb; 36(7):58-60. PubMed ID: 16515076
    [No Abstract]   [Full Text] [Related]  

  • 6. INS/EKF-based stride length, height and direction intent detection for walking assistance robots.
    Brescianini D; Jung JY; Jang IH; Park HS; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975363. PubMed ID: 22275567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on bio-cooperative control in gait rehabilitation.
    Koenig A; Omlin X; Novak D; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975454. PubMed ID: 22275652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are Wearable Robots Effective for Gait Recovery After Stroke?
    Cirstea CM
    Stroke; 2019 Dec; 50(12):3337-3338. PubMed ID: 31623546
    [No Abstract]   [Full Text] [Related]  

  • 10. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.
    O'Malley MK; Ro T; Levin HS
    Arch Phys Med Rehabil; 2006 Dec; 87(12 Suppl 2):S59-66. PubMed ID: 17140881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control strategies for effective robot assisted gait rehabilitation: the state of art and future prospects.
    Cao J; Xie SQ; Das R; Zhu GL
    Med Eng Phys; 2014 Dec; 36(12):1555-66. PubMed ID: 25205588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Velocity-dependent reference trajectory generation for the LOPES gait training robot.
    Tufekciler N; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975414. PubMed ID: 22275617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait training induced change in corticomotor excitability in patients with chronic stroke.
    Yen CL; Wang RY; Liao KK; Huang CC; Yang YR
    Neurorehabil Neural Repair; 2008; 22(1):22-30. PubMed ID: 17507641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fostering the interface: Contemporary interventions for stroke rehabilitation and measures of neuroplasticity. Foreword.
    Wolf SL
    Top Stroke Rehabil; 2009; 16(4):v-vi. PubMed ID: 19891093
    [No Abstract]   [Full Text] [Related]  

  • 15. Neuromorphic walking gait control.
    Still S; Hepp K; Douglas RJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):496-508. PubMed ID: 16566475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable walking with asymmetric legs.
    Merker A; Rummel J; Seyfarth A
    Bioinspir Biomim; 2011 Dec; 6(4):045004. PubMed ID: 22126858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroplasticity and rehabilitation.
    Hallett M
    J Rehabil Res Dev; 2005; 42(4):xvii-xxii. PubMed ID: 16320136
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluating alternative gait strategies using evolutionary robotics.
    Sellers WI; Dennis LA; W -J W; Crompton RH
    J Anat; 2004 May; 204(5):343-51. PubMed ID: 15198699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait impairment in neurological disorders: a new technological approach.
    Semprini R; Sale P; Foti C; Fini M; Franceschini M
    Funct Neurol; 2009; 24(4):179-83. PubMed ID: 20412722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.