BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18225863)

  • 1. Chemical reaction imaging within microfluidic devices using confocal raman spectroscopy: the case of water and deuterium oxide as a model system.
    Sarrazin F; Salmon JB; Talaga D; Servant L
    Anal Chem; 2008 Mar; 80(5):1689-95. PubMed ID: 18225863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line laser Raman spectroscopic probing of droplets engineered in microfluidic devices.
    Cristobal G; Arbouet L; Sarrazin F; Talaga D; Bruneel JL; Joanicot M; Servant L
    Lab Chip; 2006 Sep; 6(9):1140-6. PubMed ID: 16929392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical imaging of microfluidic flows using ATR-FTIR spectroscopy.
    Chan KL; Gulati S; Edel JB; de Mello AJ; Kazarian SG
    Lab Chip; 2009 Oct; 9(20):2909-13. PubMed ID: 19789743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced mixing in microfluidic channels.
    Hellman AN; Rau KR; Yoon HH; Bae S; Palmer JF; Phillips KS; Allbritton NL; Venugopalan V
    Anal Chem; 2007 Jun; 79(12):4484-92. PubMed ID: 17508715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially-resolved analysis of nanoparticle nucleation and growth in a microfluidic reactor.
    Sounart TL; Safier PA; Voigt JA; Hoyt J; Tallant DR; Matzke CM; Michalske TA
    Lab Chip; 2007 Jul; 7(7):908-15. PubMed ID: 17594011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface enhanced Raman spectroscopy for microfluidic pillar arrayed separation chips.
    Taylor LC; Kirchner TB; Lavrik NV; Sepaniak MJ
    Analyst; 2012 Feb; 137(4):1005-12. PubMed ID: 22193421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips.
    Chen L; Choo J
    Electrophoresis; 2008 May; 29(9):1815-28. PubMed ID: 18384070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of reactions O((1)D)+C(6)H(6) and C(6)D(6).
    Chen HF; Liang CW; Lin JJ; Lee YP; Ogilvie JF; Xu ZF; Lin MC
    J Chem Phys; 2008 Nov; 129(17):174303. PubMed ID: 19045343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative detection of C-deuterated drugs by CARS microscopy and Raman microspectroscopy.
    Bergner G; Albert CR; Schiller M; Bringmann G; Schirmeister T; Dietzek B; Niebling S; Schlücker S; Popp J
    Analyst; 2011 Sep; 136(18):3686-93. PubMed ID: 21785774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopic monitoring of droplet polymerization in a microfluidic device.
    Barnes SE; Cygan ZT; Yates JK; Beers KL; Amis EJ
    Analyst; 2006 Sep; 131(9):1027-33. PubMed ID: 17047803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady and out-of-equilibrium phase diagram of a complex fluid at the nanolitre scale: combining microevaporation, confocal Raman imaging and small angle X-ray scattering.
    Daubersies L; Leng J; Salmon JB
    Lab Chip; 2013 Mar; 13(5):910-9. PubMed ID: 23319166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of surface silanol groups in silicagel by deuterium exchange combined with infrared spectroscopy and chemometrics.
    Christy AA; Egeberg PK
    Analyst; 2005 May; 130(5):738-44. PubMed ID: 15852145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthetic reaction network: chemical amplification using nonequilibrium autocatalytic reactions coupled in time.
    Gerdts CJ; Sharoyan DE; Ismagilov RF
    J Am Chem Soc; 2004 May; 126(20):6327-31. PubMed ID: 15149230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.