BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1669 related articles for article (PubMed ID: 18225878)

  • 1. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2009 May; 113(20):7194-8. PubMed ID: 19388690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties.
    Róg T; Vattulainen I; Bunker A; Karttunen M
    J Phys Chem B; 2007 Aug; 111(34):10146-54. PubMed ID: 17676793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular-dynamics study.
    Gurtovenko AA
    J Chem Phys; 2005 Jun; 122(24):244902. PubMed ID: 16035811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations.
    Róg T; Martinez-Seara H; Munck N; Oresic M; Karttunen M; Vattulainen I
    J Phys Chem B; 2009 Mar; 113(11):3413-22. PubMed ID: 19228006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion dynamics in cationic lipid bilayer systems in saline solutions.
    Miettinen MS; Gurtovenko AA; Vattulainen I; Karttunen M
    J Phys Chem B; 2009 Jul; 113(27):9226-34. PubMed ID: 19534449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers.
    Cordomí A; Perez JJ
    J Phys Chem B; 2007 Jun; 111(25):7052-63. PubMed ID: 17530884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the lipid bilayer phase state on the water membrane interface.
    Stepniewski M; Bunker A; Pasenkiewicz-Gierula M; Karttunen M; Róg T
    J Phys Chem B; 2010 Sep; 114(36):11784-92. PubMed ID: 20726538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of monovalent salt on cationic lipid membranes as revealed by molecular dynamics simulations.
    Gurtovenko AA; Miettinen M; Karttunen M; Vattulainen I
    J Phys Chem B; 2005 Nov; 109(44):21126-34. PubMed ID: 16853736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation of an archaeal lipid bilayer with sodium chloride.
    Shinoda K; Shinoda W; Mikami M
    Phys Chem Chem Phys; 2007 Feb; 9(5):643-50. PubMed ID: 17242746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lipid composition on buforin II structure and membrane entry.
    Fleming E; Maharaj NP; Chen JL; Nelson RB; Elmore DE
    Proteins; 2008 Nov; 73(2):480-91. PubMed ID: 18452210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics.
    Pöyry S; Róg T; Karttunen M; Vattulainen I
    J Phys Chem B; 2009 Nov; 113(47):15513-21. PubMed ID: 19886603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alkali cations and halide anions on the DOPC lipid membrane.
    Vácha R; Siu SW; Petrov M; Böckmann RA; Barucha-Kraszewska J; Jurkiewicz P; Hof M; Berkowitz ML; Jungwirth P
    J Phys Chem A; 2009 Jul; 113(26):7235-43. PubMed ID: 19290591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating affinities for ion-lipid association from simulation against experiment.
    Klasczyk B; Knecht V
    J Phys Chem A; 2011 Sep; 115(38):10587-95. PubMed ID: 21859136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers.
    Suits F; Pitman MC; Feller SE
    J Chem Phys; 2005 Jun; 122(24):244714. PubMed ID: 16035800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of phosphatidylglycerols in the stability of bacterial membranes.
    Zhao W; Róg T; Gurtovenko AA; Vattulainen I; Karttunen M
    Biochimie; 2008 Jun; 90(6):930-8. PubMed ID: 18373983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Apr; 112(15):4629-34. PubMed ID: 18363402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.
    Im W; Roux B
    J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 84.