These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18226233)

  • 1. Learning from positive examples when the negative class is undetermined--microRNA gene identification.
    Yousef M; Jung S; Showe LC; Showe MK
    Algorithms Mol Biol; 2008 Jan; 3():2. PubMed ID: 18226233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting novel microRNA: a comprehensive comparison of machine learning approaches.
    Stegmayer G; Di Persia LE; Rubiolo M; Gerard M; Pividori M; Yones C; Bugnon LA; Rodriguez T; Raad J; Milone DH
    Brief Bioinform; 2019 Sep; 20(5):1607-1620. PubMed ID: 29800232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.
    Bandyopadhyay S; Mitra R
    Bioinformatics; 2009 Oct; 25(20):2625-31. PubMed ID: 19692556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.
    Yousef M; Saçar Demirci MD; Khalifa W; Allmer J
    Adv Bioinformatics; 2016; 2016():5670851. PubMed ID: 27190509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRBoost: boosting support vector machines for microRNA precursor classification.
    Tran Vdu T; Tempel S; Zerath B; Zehraoui F; Tahi F
    RNA; 2015 May; 21(5):775-85. PubMed ID: 25795417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer survival classification using integrated data sets and intermediate information.
    Kim S; Park T; Kon M
    Artif Intell Med; 2014 Sep; 62(1):23-31. PubMed ID: 24997860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM.
    Stegmayer G; Yones C; Kamenetzky L; Milone DH
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1316-1326. PubMed ID: 27295687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MiRTif: a support vector machine-based microRNA target interaction filter.
    Yang Y; Wang YP; Li KB
    BMC Bioinformatics; 2008 Dec; 9 Suppl 12(Suppl 12):S4. PubMed ID: 19091027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of feature selection on one and two-class classification performance for plant microRNAs.
    Khalifa W; Yousef M; Saçar Demirci MD; Allmer J
    PeerJ; 2016; 4():e2135. PubMed ID: 27366641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-supervised machine learning framework for microRNA classification.
    Sheikh Hassani M; Green JR
    Hum Genomics; 2019 Oct; 13(Suppl 1):43. PubMed ID: 31639051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers.
    Sarkar JP; Saha I; Sarkar A; Maulik U
    Comput Biol Med; 2021 Apr; 131():104244. PubMed ID: 33550016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Distributed Classifier for MicroRNA Target Prediction with Validation Through TCGA Expression Data.
    Ghoshal A; Zhang J; Roth MA; Xia KM; Grama AY; Chaterji S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1037-1051. PubMed ID: 29993641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naïve Bayes for microRNA target predictions--machine learning for microRNA targets.
    Yousef M; Jung S; Kossenkov AV; Showe LC; Showe MK
    Bioinformatics; 2007 Nov; 23(22):2987-92. PubMed ID: 17925304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy.
    Loganantharaj R; Randall TA
    Methods Mol Biol; 2017; 1617():133-158. PubMed ID: 28540682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting human microRNA precursors based on an optimized feature subset generated by GA-SVM.
    Wang Y; Chen X; Jiang W; Li L; Li W; Yang L; Liao M; Lian B; Lv Y; Wang S; Wang S; Li X
    Genomics; 2011 Aug; 98(2):73-8. PubMed ID: 21586321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA transcription start site prediction with multi-objective feature selection.
    Bhattacharyya M; Feuerbach L; Bhadra T; Lengauer T; Bandyopadhyay S
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 6. PubMed ID: 22499686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational and bioinformatics methods for microRNA gene prediction.
    Allmer J
    Methods Mol Biol; 2014; 1107():157-75. PubMed ID: 24272436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Pre-miRNA Classification by Reducing the Effect of Class Imbalance.
    Zhong Y; Xuan P; Han K; Zhang W; Li J
    Biomed Res Int; 2015; 2015():960108. PubMed ID: 26640803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.