These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18226937)

  • 21. Cortical responses to thermal pain depend on stimulus size: a functional MRI study.
    Apkarian AV; Gelnar PA; Krauss BR; Szeverenyi NM
    J Neurophysiol; 2000 May; 83(5):3113-22. PubMed ID: 10805705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence and explanation for the involvement of the nucleus accumbens in pain processing.
    Harris HN; Peng YB
    Neural Regen Res; 2020 Apr; 15(4):597-605. PubMed ID: 31638081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. No unified reward prediction error in local field potentials from the human nucleus accumbens: evidence from epilepsy patients.
    Stenner MP; Rutledge RB; Zaehle T; Schmitt FC; Kopitzki K; Kowski AB; Voges J; Heinze HJ; Dolan RJ
    J Neurophysiol; 2015 Aug; 114(2):781-92. PubMed ID: 26019312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pain modulates neural responses to reward in the medial prefrontal cortex.
    Wang C; Bao C; Gao J; Gu Y; Dong XW
    Hum Brain Mapp; 2020 Apr; 41(5):1372-1381. PubMed ID: 31785068
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acute tramadol enhances brain activity associated with reward anticipation in the nucleus accumbens.
    Asari Y; Ikeda Y; Tateno A; Okubo Y; Iijima T; Suzuki H
    Psychopharmacology (Berl); 2018 Sep; 235(9):2631-2642. PubMed ID: 29951769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dysfunctional reward circuitry in obsessive-compulsive disorder.
    Figee M; Vink M; de Geus F; Vulink N; Veltman DJ; Westenberg H; Denys D
    Biol Psychiatry; 2011 May; 69(9):867-74. PubMed ID: 21272861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Understanding of the psychiatry in palliative care: dysfunction of the rewarding system under the pain state associated with exacerbating pain].
    Ikegami D; Yamashita A; Narita M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2013 Nov; 33(5-6):199-204. PubMed ID: 25069258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered functional connectivity of the nucleus accumbens subdivisions in amphetamine-type stimulant abusers: a resting-state fMRI study.
    Wang Y; Yan KJ; Fan CX; Luo XN; Zhou Y
    BMC Neurosci; 2019 Dec; 20(1):66. PubMed ID: 31888484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual differences in reward responding explain placebo-induced expectations and effects.
    Scott DJ; Stohler CS; Egnatuk CM; Wang H; Koeppe RA; Zubieta JK
    Neuron; 2007 Jul; 55(2):325-36. PubMed ID: 17640532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward- and aversion-related stimuli.
    Ventura R; Morrone C; Puglisi-Allegra S
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5181-6. PubMed ID: 17360372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli.
    Oei NYL; Both S; van Heemst D; van der Grond J
    Psychoneuroendocrinology; 2014 Jan; 39():111-120. PubMed ID: 24275010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction error as a linear function of reward probability is coded in human nucleus accumbens.
    Abler B; Walter H; Erk S; Kammerer H; Spitzer M
    Neuroimage; 2006 Jun; 31(2):790-5. PubMed ID: 16487726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Corticostriatal circuits in the transition to chronic back pain: The predictive role of reward learning.
    Löffler M; Levine SM; Usai K; Desch S; Kandić M; Nees F; Flor H
    Cell Rep Med; 2022 Jul; 3(7):100677. PubMed ID: 35798001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain Circuits Encoding Reward from Pain Relief.
    Navratilova E; Atcherley CW; Porreca F
    Trends Neurosci; 2015 Nov; 38(11):741-750. PubMed ID: 26603560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.
    Bergado Acosta JR; Kahl E; Kogias G; Uzuneser TC; Fendt M
    Neuropharmacology; 2017 Mar; 114():58-66. PubMed ID: 27894877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats.
    Saalfield J; Spear L
    Alcohol; 2019 Aug; 78():57-68. PubMed ID: 30797833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ventral pallidal modulation of aversion processing.
    Wulff AB; Tooley J; Marconi LJ; Creed MC
    Brain Res; 2019 Jun; 1713():62-69. PubMed ID: 30300634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit.
    Kenkel WM; Yee JR; Moore K; Madularu D; Kulkarni P; Gamber K; Nedelman M; Ferris CF
    Transl Psychiatry; 2016 Mar; 6(3):e763. PubMed ID: 27003189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents.
    Ernst M; Nelson EE; Jazbec S; McClure EB; Monk CS; Leibenluft E; Blair J; Pine DS
    Neuroimage; 2005 May; 25(4):1279-91. PubMed ID: 15850746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI.
    Chen JI; Ha B; Bushnell MC; Pike B; Duncan GH
    J Neurophysiol; 2002 Jul; 88(1):464-74. PubMed ID: 12091568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.