BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 18227227)

  • 1. Small-scale production of Burkholderia cepacia ATCC21808 lipase adapted to high-throughput screening.
    Puech-Guenot S; Lafaquière V; Guieysse D; Landric-Burtin L; Monsan P; Remaud-Siméon M
    J Biomol Screen; 2008 Jan; 13(1):72-9. PubMed ID: 18227227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Homologous expression of Burkholderia cepacia G63 lipase gene based on T7 RNA polymerase expression system].
    Jia B; Yang J; Yan Y
    Sheng Wu Gong Cheng Xue Bao; 2009 Feb; 25(2):215-22. PubMed ID: 19459326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homologous overexpression of a lipase from Burkholderia cepacia using the lambda Red recombinase system.
    Jia B; Yang JK; Liu WS; Li X; Yan YJ
    Biotechnol Lett; 2010 Apr; 32(4):521-6. PubMed ID: 20033831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding.
    Quyen DT; Schmidt-Dannert C; Schmid RD
    Appl Environ Microbiol; 1999 Feb; 65(2):787-94. PubMed ID: 9925617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli.
    Madan B; Mishra P
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):597-604. PubMed ID: 19629472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism.
    Ema T; Fujii T; Ozaki M; Korenaga T; Sakai T
    Chem Commun (Camb); 2005 Oct; (37):4650-1. PubMed ID: 16175280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site.
    Yang J; Koga Y; Nakano H; Yamane T
    Protein Eng; 2002 Feb; 15(2):147-52. PubMed ID: 11917151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and expression of perhydrolase genes from Pseudomonas aeruginosa and Burkholderia cepacia in Escherichia coli.
    Song JK; Ahn HJ; Kim HS; Song BK
    Biotechnol Lett; 2006 Jun; 28(12):849-56. PubMed ID: 16786268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized and automated protocols for high-throughput screening of amylosucrase libraries.
    Emond S; Potocki-Véronèse G; Mondon P; Bouayadi K; Kharrat H; Monsan P; Remaud-Simeon M
    J Biomol Screen; 2007 Aug; 12(5):715-23. PubMed ID: 17517906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Burkholderia cepacia lipase gene modification and its constitutive and inducible expression in Pichia pastoris].
    Jia B; Liu W; Yang J; Ye C; Xu L; Yan Y
    Wei Sheng Wu Xue Bao; 2010 Sep; 50(9):1194-201. PubMed ID: 21090259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of a bacterial lipase by its chaperone.
    Hobson AH; Buckley CM; Aamand JL; Jørgensen ST; Diderichsen B; McConnell DJ
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5682-6. PubMed ID: 7685908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of novel enantioselective lipases by SIMPLEX.
    Koga Y; Yamane T; Nakano H
    Methods Mol Biol; 2007; 375():165-81. PubMed ID: 17634602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli.
    Yu M; Tsang JS
    Protein Expr Purif; 2006 Oct; 49(2):219-27. PubMed ID: 16737826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Expression of a Thermally Stable and Methanol-Resistant Lipase and Its Chaperone from Burkholderia cepacia G63 in Escherichia coli.
    Zhang J; Tian M; Chen X; Lv P; Luo W; Wang Z; Xu J; Wang Z
    Appl Biochem Biotechnol; 2021 Mar; 193(3):717-729. PubMed ID: 33184764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and expression of a novel esterase gene cpoA from Burkholderia cepacia.
    Kim CH; Lee JH; Heo JH; Kwon OS; Kang HA; Rhee SK
    J Appl Microbiol; 2004; 96(6):1306-16. PubMed ID: 15139923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue-white selection of regulatory genes that affect the expression of dehalogenase IVa of Burkholderia cepacia MBA4.
    Faan YW; Yu M; Tsang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):429-37. PubMed ID: 17530244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes.
    Parsons YN; Banasko R; Detsika MG; Duangsonk K; Rainbow L; Hart CA; Winstanley C
    Arch Microbiol; 2003 Mar; 179(3):214-23. PubMed ID: 12610727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a gene from Burkholderia cepacia IS-16 encoding a protein that facilitates phosphatase activity.
    Rodríguez H; Rossolini GM; Gonzalez T; Li J; Glick BR
    Curr Microbiol; 2000 Jun; 40(6):362-6. PubMed ID: 10827277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the Pseudomonas cepacia DSM3959 lipase with its chaperone, LimA.
    Hobson AH; Buckley CM; Jørgensen ST; Diderichsen B; McConnell DJ
    J Biochem; 1995 Sep; 118(3):575-81. PubMed ID: 8690720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autodisplay for the co-expression of lipase and foldase on the surface of E. coli: washing with designer bugs.
    Kranen E; Detzel C; Weber T; Jose J
    Microb Cell Fact; 2014 Jan; 13():19. PubMed ID: 24476025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.