BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18227262)

  • 1. Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery.
    van Mourik A; Bleumink-Pluym NMC; van Dijk L; van Putten JPM; Wösten MMSM
    Microbiology (Reading); 2008 Feb; 154(Pt 2):584-592. PubMed ID: 18227262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria.
    Marrichi M; Camacho L; Russell DG; DeLisa MP
    J Biol Chem; 2008 Dec; 283(50):35223-35. PubMed ID: 18819916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of TAT system translocated PhoX to Campylobacter jejuni phosphate metabolism and resilience to environmental stresses.
    Drozd M; Gangaiah D; Liu Z; Rajashekara G
    PLoS One; 2011; 6(10):e26336. PubMed ID: 22028859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal Peptide Hydrophobicity Modulates Interaction with the Twin-Arginine Translocase.
    Huang Q; Palmer T
    mBio; 2017 Aug; 8(4):. PubMed ID: 28765221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characterization of the twin-arginine translocation system in Campylobacter jejuni.
    Rajashekara G; Drozd M; Gangaiah D; Jeon B; Liu Z; Zhang Q
    Foodborne Pathog Dis; 2009 Oct; 6(8):935-45. PubMed ID: 19799526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impairment of twin-arginine-dependent export by seemingly small alterations of substrate conformation.
    Maurer C; Panahandeh S; Moser M; Müller M
    FEBS Lett; 2009 Sep; 583(17):2849-53. PubMed ID: 19631648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni.
    Hitchcock A; Hall SJ; Myers JD; Mulholland F; Jones MA; Kelly DJ
    Microbiology (Reading); 2010 Oct; 156(Pt 10):2994-3010. PubMed ID: 20688826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of unfolded PhoA to the TAT translocon of Escherichia coli.
    Richter S; Brüser T
    J Biol Chem; 2005 Dec; 280(52):42723-30. PubMed ID: 16263723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni.
    Liu YW; Hitchcock A; Salmon RC; Kelly DJ
    Microbiology (Reading); 2014 Sep; 160(Pt 9):2053-2066. PubMed ID: 24961951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system.
    Wösten MM; Parker CT; van Mourik A; Guilhabert MR; van Dijk L; van Putten JP
    Mol Microbiol; 2006 Oct; 62(1):278-91. PubMed ID: 16956379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis.
    Eijlander RT; Kolbusz MA; Berendsen EM; Kuipers OP
    Microbiology (Reading); 2009 Jun; 155(Pt 6):1776-1785. PubMed ID: 19383693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formate dehydrogenase localization and activity are dependent on an intact twin arginine translocation system (Tat) in Campylobacter jejuni 81-176.
    Kassem II; Rajashekara G
    Foodborne Pathog Dis; 2014 Dec; 11(12):917-9. PubMed ID: 25268895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli.
    Angelini S; Moreno R; Gouffi K; Santini C; Yamagishi A; Berenguer J; Wu L
    FEBS Lett; 2001 Oct; 506(2):103-7. PubMed ID: 11591380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis.
    Buchanan G; de Leeuw E; Stanley NR; Wexler M; Berks BC; Sargent F; Palmer T
    Mol Microbiol; 2002 Mar; 43(6):1457-70. PubMed ID: 11952898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and biochemical properties of an alkaline phosphatase PhoX family protein found in many bacteria.
    Zaheer R; Morton R; Proudfoot M; Yakunin A; Finan TM
    Environ Microbiol; 2009 Jun; 11(6):1572-87. PubMed ID: 19245529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interaction of SecB and SecA with the N-terminal region of mature alkaline phosphatase on its secretion in Escherichia coli].
    Khokhlova OV; Nesmeianova MA
    Mol Biol (Mosk); 2003; 37(4):712-8. PubMed ID: 12942645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behaviour of topological marker proteins targeted to the Tat protein transport pathway.
    Stanley NR; Sargent F; Buchanan G; Shi J; Stewart V; Palmer T; Berks BC
    Mol Microbiol; 2002 Feb; 43(4):1005-21. PubMed ID: 11929547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Export pathway selectivity of Escherichia coli twin arginine translocation signal peptides.
    Tullman-Ercek D; DeLisa MP; Kawarasaki Y; Iranpour P; Ribnicky B; Palmer T; Georgiou G
    J Biol Chem; 2007 Mar; 282(11):8309-16. PubMed ID: 17218314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological studies on the twin-arginine translocase component TatC.
    Behrendt J; Standar K; Lindenstrauss U; Brüser T
    FEMS Microbiol Lett; 2004 May; 234(2):303-8. PubMed ID: 15135537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli.
    Panahandeh S; Maurer C; Moser M; DeLisa MP; Müller M
    J Biol Chem; 2008 Nov; 283(48):33267-75. PubMed ID: 18836181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.