These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18228259)

  • 1. Agent-based modeling of multicell morphogenic processes during development.
    Thorne BC; Bailey AM; DeSimone DW; Peirce SM
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):344-53. PubMed ID: 18228259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining experiments with multi-cell agent-based modeling to study biological tissue patterning.
    Thorne BC; Bailey AM; Peirce SM
    Brief Bioinform; 2007 Jul; 8(4):245-57. PubMed ID: 17584763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural crest development: the interplay between morphogenesis and cell differentiation.
    Erickson CA; Reedy MV
    Curr Top Dev Biol; 1998; 40():177-209. PubMed ID: 9673851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale computational analysis of Xenopus laevis morphogenesis reveals key insights of systems-level behavior.
    Robertson SH; Smith CK; Langhans AL; McLinden SE; Oberhardt MA; Jakab KR; Dzamba B; DeSimone DW; Papin JA; Peirce SM
    BMC Syst Biol; 2007 Oct; 1():46. PubMed ID: 17953751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development.
    Minoux M; Rijli FM
    Development; 2010 Aug; 137(16):2605-21. PubMed ID: 20663816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis.
    Kulesa P; Ellies DL; Trainor PA
    Dev Dyn; 2004 Jan; 229(1):14-29. PubMed ID: 14699574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of behavioral spaces: A computational approach to analysis and understanding of agent based models and agent behaviors.
    Cenek M; Dahl SK
    Chaos; 2016 Nov; 26(11):113107. PubMed ID: 27908025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories.
    White DE; Sylvester JB; Levario TJ; Lu H; Streelman JT; McDevitt TC; Kemp ML
    Integr Biol (Camb); 2015 Jul; 7(7):825-33. PubMed ID: 26095427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of neural crest cell populations: occurrence, distribution and underlying mechanisms.
    Vaglia JL; Hall BK
    Int J Dev Biol; 1999 Mar; 43(2):95-110. PubMed ID: 10235385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of neural crest-derived clones reveals novel aspects of facial development.
    Kaucka M; Ivashkin E; Gyllborg D; Zikmund T; Tesarova M; Kaiser J; Xie M; Petersen J; Pachnis V; Nicolis SK; Yu T; Sharpe P; Arenas E; Brismar H; Blom H; Clevers H; Suter U; Chagin AS; Fried K; Hellander A; Adameyko I
    Sci Adv; 2016 Aug; 2(8):e1600060. PubMed ID: 27493992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurocristopathies: New insights 150 years after the neural crest discovery.
    Vega-Lopez GA; Cerrizuela S; Tribulo C; Aybar MJ
    Dev Biol; 2018 Dec; 444 Suppl 1():S110-S143. PubMed ID: 29802835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural crest cell plasticity. size matters.
    Sandell LL; Trainor PA
    Adv Exp Med Biol; 2006; 589():78-95. PubMed ID: 17076276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Making headway: the roles of Hox genes and neural crest cells in craniofacial development.
    Trainor PA
    ScientificWorldJournal; 2003 Apr; 3():240-64. PubMed ID: 12806110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning.
    Trainor PA; Ariza-McNaughton L; Krumlauf R
    Science; 2002 Feb; 295(5558):1288-91. PubMed ID: 11847340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early stages of neural crest ontogeny: formation and regulation of cell delamination.
    Kalcheim C; Burstyn-Cohen T
    Int J Dev Biol; 2005; 49(2-3):105-16. PubMed ID: 15906222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trans-scale mechanotransductive cascade of biochemical and biomechanical patterning in embryonic development: the light side of the force.
    Merle T; Farge E
    Curr Opin Cell Biol; 2018 Dec; 55():111-118. PubMed ID: 30077057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural crest streaming as an emergent property of tissue interactions during morphogenesis.
    Szabó A; Theveneau E; Turan M; Mayor R
    PLoS Comput Biol; 2019 Apr; 15(4):e1007002. PubMed ID: 31009457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of cell-cell and cell-matrix interactions in the morphogenesis of the neural crest.
    Erickson CA; Perris R
    Dev Biol; 1993 Sep; 159(1):60-74. PubMed ID: 8365575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AKT signaling displays multifaceted functions in neural crest development.
    Sittewelle M; Monsoro-Burq AH
    Dev Biol; 2018 Dec; 444 Suppl 1():S144-S155. PubMed ID: 29859890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the evolution of morphogenetic models: mechano-chemical interactions and an integrated view of cell differentiation, growth, pattern formation and morphogenesis.
    Urdy S
    Biol Rev Camb Philos Soc; 2012 Nov; 87(4):786-803. PubMed ID: 22429266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.