These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18228411)

  • 1. Analysis of oxidative modification of proteins.
    Yan LJ; Sohal RS
    Curr Protoc Cell Biol; 2002 May; Chapter 7():Unit 7.9. PubMed ID: 18228411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of bovine serum albumin: identification of oxidation products and structural modifications.
    Guedes S; Vitorino R; Domingues R; Amado F; Domingues P
    Rapid Commun Mass Spectrom; 2009 Aug; 23(15):2307-15. PubMed ID: 19575405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of oxidative modification of proteins.
    Yan LJ; Sohal RS
    Curr Protoc Protein Sci; 2001 May; Chapter 14():Unit14.4. PubMed ID: 18429124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-catalyzed oxidation of protein-bound dopamine.
    Akagawa M; Ishii Y; Ishii T; Shibata T; Yotsu-Yamashita M; Suyama K; Uchida K
    Biochemistry; 2006 Dec; 45(50):15120-8. PubMed ID: 17154550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human studies related to protein oxidation: protein carbonyl content as a marker of damage.
    Chevion M; Berenshtein E; Stadtman ER
    Free Radic Res; 2000 Nov; 33 Suppl():S99-108. PubMed ID: 11191280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide profiling of carbonylated proteins and carbonylation sites in HeLa cells under mild oxidative stress conditions.
    Bollineni RC; Hoffmann R; Fedorova M
    Free Radic Biol Med; 2014 Mar; 68():186-95. PubMed ID: 24321318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interaction of reactive oxygen and nitrogen species with proteins].
    Ponczek MB; Wachowicz B
    Postepy Biochem; 2005; 51(2):140-5. PubMed ID: 16209351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unrestricted Mass Spectrometric Data Analysis for Identification, Localization, and Quantification of Oxidative Protein Modifications.
    Rykær M; Svensson B; Davies MJ; Hägglund P
    J Proteome Res; 2017 Nov; 16(11):3978-3988. PubMed ID: 28920440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of oxidative modification of proteins.
    Yan LJ
    Curr Protoc Protein Sci; 2009 Feb; Chapter 14():Unit 14.4. PubMed ID: 19235136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.
    Stadtman ER; Levine RL
    Amino Acids; 2003 Dec; 25(3-4):207-18. PubMed ID: 14661084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modifications of blood platelet proteins of patients with schizophrenia.
    Dietrich-Muszalska A; Olas B
    Platelets; 2009 Mar; 20(2):90-6. PubMed ID: 19235050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of oxidative modification of proteins.
    Yan LJ
    Curr Protoc Protein Sci; 2009 Apr; Chapter 14():14.4.1-14.4.28. PubMed ID: 19365787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement. I: mechanisms of UPE of biological materials.
    Khabiri F; Hagens R; Smuda C; Soltau A; Schreiner V; Wenck H; Wittern KP; Duchstein HJ; Mei W
    Skin Res Technol; 2008 Feb; 14(1):103-11. PubMed ID: 18211608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of carbonylated peptides by tandem mass spectrometry using a precursor ion-like scan in negative ion mode.
    Bollineni RCh; Fedorova M; Hoffmann R
    J Proteomics; 2011 Oct; 74(11):2351-9. PubMed ID: 21669303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(τ)-(3-propanal)histidine as the major adduct.
    Maeshima T; Honda K; Chikazawa M; Shibata T; Kawai Y; Akagawa M; Uchida K
    Chem Res Toxicol; 2012 Jul; 25(7):1384-92. PubMed ID: 22716039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of lysine to N(epsilon)-(carboxymethyl)lysine increases susceptibility of proteins to metal-catalyzed oxidation.
    Requena JR; Stadtman ER
    Biochem Biophys Res Commun; 1999 Oct; 264(1):207-11. PubMed ID: 10527866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine.
    Chetyrkin SV; Mathis ME; Ham AJ; Hachey DL; Hudson BG; Voziyan PA
    Free Radic Biol Med; 2008 Apr; 44(7):1276-85. PubMed ID: 18374270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotope dilution mass spectrometric quantification of 3-nitrotyrosine in proteins and tissues is facilitated by reduction to 3-aminotyrosine.
    Crowley JR; Yarasheski K; Leeuwenburgh C; Turk J; Heinecke JW
    Anal Biochem; 1998 May; 259(1):127-35. PubMed ID: 9606153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline.
    Kyeong IG; Eum WS; Choi SY; Kang JH
    Toxicol Lett; 2013 Feb; 217(1):59-66. PubMed ID: 23228886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.