BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18229693)

  • 1. Integration of microarray and textual data improves the prognosis prediction of breast, lung and ovarian cancer patients.
    Gevaert O; Van Vooren S; de Moor B
    Pac Symp Biocomput; 2008; ():279-90. PubMed ID: 18229693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise filtering and nonparametric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian and breast cancer.
    Aris VM; Cody MJ; Cheng J; Dermody JJ; Soteropoulos P; Recce M; Tolias PP
    BMC Bioinformatics; 2004 Nov; 5():185. PubMed ID: 15569388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks.
    Gevaert O; De Smet F; Timmerman D; Moreau Y; De Moor B
    Bioinformatics; 2006 Jul; 22(14):e184-90. PubMed ID: 16873470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the sensitivity of feature ranked lists for large-scale biological data.
    Gaweł D; Fujarewicz K
    Math Biosci Eng; 2013 Jun; 10(3):667-690. PubMed ID: 23906143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A framework for list representation, enabling list stabilization through incorporation of gene exchangeabilities.
    Soneson C; Fontes M
    Biostatistics; 2012 Jan; 13(1):129-41. PubMed ID: 21908866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway-Structured Predictive Model for Cancer Survival Prediction: A Two-Stage Approach.
    Zhang X; Li Y; Akinyemiju T; Ojesina AI; Buckhaults P; Liu N; Xu B; Yi N
    Genetics; 2017 Jan; 205(1):89-100. PubMed ID: 28049703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GMM-IG framework for selecting genes as expression panel biomarkers.
    Wang M; Chen JY
    Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient approach for feature construction of high-dimensional microarray data by random projections.
    Tariq H; Eldridge E; Welch I
    PLoS One; 2018; 13(4):e0196385. PubMed ID: 29702670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Bayesian network classification methodology for gene expression data.
    Helman P; Veroff R; Atlas SR; Willman C
    J Comput Biol; 2004; 11(4):581-615. PubMed ID: 15579233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning the local Bayesian network structure around the ZNF217 oncogene in breast tumours.
    Prestat E; de Morais SR; Vendrell JA; Thollet A; Gautier C; Cohen PA; Aussem A
    Comput Biol Med; 2013 May; 43(4):334-41. PubMed ID: 23375235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Gene Selection Based on Pathway Information and Network-Constrained Regularization.
    Cao M; Fan Y; Peng Q
    Comput Math Methods Med; 2021; 2021():7471516. PubMed ID: 34394707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of early-stage lung adenocarcinoma prognostic signatures based on statistical modeling.
    Wu C; Zhang D
    Cancer Biomark; 2017; 18(2):117-123. PubMed ID: 27935544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of gene-based drug indications using compendia of public gene expression data and PubMed abstracts.
    Qabaja A; Jarada T; Elsheikh A; Alhajj R
    J Bioinform Comput Biol; 2014 Jun; 12(3):1450007. PubMed ID: 24969745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The latent process decomposition of cDNA microarray data sets.
    Rogers S; Girolami M; Campbell C; Breitling R
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):143-56. PubMed ID: 17044179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probability fold change: a robust computational approach for identifying differentially expressed gene lists.
    Deng X; Xu J; Hui J; Wang C
    Comput Methods Programs Biomed; 2009 Feb; 93(2):124-39. PubMed ID: 18842321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiclass cancer classification using gene expression profiling and probabilistic neural networks.
    Berrar DP; Downes CS; Dubitzky W
    Pac Symp Biocomput; 2003; ():5-16. PubMed ID: 12603013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ensemble machine learning approach to predict survival in breast cancer.
    Djebbari A; Liu Z; Phan S; Famili F
    Int J Comput Biol Drug Des; 2008; 1(3):275-94. PubMed ID: 20054993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian neural networks for bivariate binary data: an application to prostate cancer study.
    Chakraborty S; Ghosh M; Maiti T; Tewari A
    Stat Med; 2005 Dec; 24(23):3645-62. PubMed ID: 16138362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian ranking and selection methods using hierarchical mixture models in microarray studies.
    Noma H; Matsui S; Omori T; Sato T
    Biostatistics; 2010 Apr; 11(2):281-9. PubMed ID: 19946026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.