These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RADseq, in a highly dispersive marine invertebrate (Parastichopus californicus). Xuereb A; Benestan L; Normandeau É; Daigle RM; Curtis JMR; Bernatchez L; Fortin MJ Mol Ecol; 2018 May; 27(10):2347-2364. PubMed ID: 29654703 [TBL] [Abstract][Full Text] [Related]
3. Genetic structure of a recent climate change-driven range extension. Banks SC; Ling SD; Johnson CR; Piggott MP; Williamson JE; Beheregaray LB Mol Ecol; 2010 May; 19(10):2011-24. PubMed ID: 20406383 [TBL] [Abstract][Full Text] [Related]
4. A multidisciplinary analytical framework to delineate spawning areas and quantify larval dispersal in coastal fish. Legrand T; Di Franco A; Ser-Giacomi E; Caló A; Rossi V Mar Environ Res; 2019 Oct; 151():104761. PubMed ID: 31399203 [TBL] [Abstract][Full Text] [Related]
5. Anticipating changes to future connectivity within a network of marine protected areas. Coleman MA; Cetina-Heredia P; Roughan M; Feng M; van Sebille E; Kelaher BP Glob Chang Biol; 2017 Sep; 23(9):3533-3542. PubMed ID: 28122402 [TBL] [Abstract][Full Text] [Related]
6. Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Lessios HA; Kane J; Robertson DR Evolution; 2003 Sep; 57(9):2026-36. PubMed ID: 14575324 [TBL] [Abstract][Full Text] [Related]
7. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Baco AR; Etter RJ; Ribeiro PA; von der Heyden S; Beerli P; Kinlan BP Mol Ecol; 2016 Jul; 25(14):3276-98. PubMed ID: 27146215 [TBL] [Abstract][Full Text] [Related]
8. Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea. Froukh T; Kochzius M Mol Ecol; 2007 Apr; 16(7):1359-67. PubMed ID: 17391261 [TBL] [Abstract][Full Text] [Related]
9. Patterns of Fish Connectivity between a Marine Protected Area and Surrounding Fished Areas. Sahyoun R; Guidetti P; Di Franco A; Planes S PLoS One; 2016; 11(12):e0167441. PubMed ID: 27907100 [TBL] [Abstract][Full Text] [Related]
10. Ocean currents and the population genetic signature of fish migrations. Krueck NC; Treml EA; Innes DJ; Ovenden JR Ecology; 2020 Mar; 101(3):e02967. PubMed ID: 31925790 [TBL] [Abstract][Full Text] [Related]
11. Oceanic interchange and nonequilibrium population structure in the estuarine dependent Indo-Pacific tasselfish, Polynemus sheridani. Chenoweth SF; Hughes JM Mol Ecol; 2003 Sep; 12(9):2387-97. PubMed ID: 12919476 [TBL] [Abstract][Full Text] [Related]
12. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions. Ling SD; Johnson CR Ecol Appl; 2012 Jun; 22(4):1232-45. PubMed ID: 22827131 [TBL] [Abstract][Full Text] [Related]
13. Scales of benthic-pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Navarrete SA; Wieters EA; Broitman BR; Castilla JC Proc Natl Acad Sci U S A; 2005 Dec; 102(50):18046-51. PubMed ID: 16332959 [TBL] [Abstract][Full Text] [Related]
14. Seascape genomics reveals fine-scale patterns of dispersal for a reef fish along the ecologically divergent coast of Northwestern Australia. DiBattista JD; Travers MJ; Moore GI; Evans RD; Newman SJ; Feng M; Moyle SD; Gorton RJ; Saunders T; Berry O Mol Ecol; 2017 Nov; 26(22):6206-6223. PubMed ID: 29080323 [TBL] [Abstract][Full Text] [Related]
15. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Hidalgo M; Rossi V; Monroy P; Ser-Giacomi E; Hernández-García E; Guijarro B; Massutí E; Alemany F; Jadaud A; Perez JL; Reglero P Ecol Appl; 2019 Jul; 29(5):e01913. PubMed ID: 31144784 [TBL] [Abstract][Full Text] [Related]
16. Transport of North Sea cod larvae into the Skagerrak coastal populations. Knutsen H; André C; Jorde PE; Skogen MD; Thuróczy E; Stenseth NC Proc Biol Sci; 2004 Jul; 271(1546):1337-44. PubMed ID: 15306331 [TBL] [Abstract][Full Text] [Related]
17. Local and regional scale habitat heterogeneity contribute to genetic adaptation in a commercially important marine mollusc (Haliotis rubra) from southeastern Australia. Miller AD; Hoffmann AA; Tan MH; Young M; Ahrens C; Cocomazzo M; Rattray A; Ierodiaconou DA; Treml E; Sherman CDH Mol Ecol; 2019 Jun; 28(12):3053-3072. PubMed ID: 31077479 [TBL] [Abstract][Full Text] [Related]
18. Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Miller KJ; Ayre DJ Conserv Biol; 2008 Oct; 22(5):1245-54. PubMed ID: 18637917 [TBL] [Abstract][Full Text] [Related]
19. Adaptive capacity of the habitat modifying sea urchin Centrostephanus rodgersii to ocean warming and ocean acidification: performance of early embryos. Foo SA; Dworjanyn SA; Poore AG; Byrne M PLoS One; 2012; 7(8):e42497. PubMed ID: 22880005 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic patterns favouring sea urchin recruitment in coastal areas: A Mediterranean study case. Farina S; Quattrocchi G; Guala I; Cucco A Mar Environ Res; 2018 Aug; 139():182-192. PubMed ID: 29804786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]