These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 18229943)

  • 1. Sample dispersion for segmented flow in microchannels with rectangular cross section.
    Kreutzer MT; Günther A; Jensen KF
    Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure drop of slug flow in microchannels with increasing void fraction: experiment and modeling.
    Molla S; Eskin D; Mostowfi F
    Lab Chip; 2011 Jun; 11(11):1968-78. PubMed ID: 21512682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromixing of miscible liquids in segmented gas-liquid flow.
    Günther A; Jhunjhunwala M; Thalmann M; Schmidt MA; Jensen KF
    Langmuir; 2005 Feb; 21(4):1547-55. PubMed ID: 15697306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pressure drop along rectangular microchannels containing bubbles.
    Fuerstman MJ; Lai A; Thurlow ME; Shevkoplyas SS; Stone HA; Whitesides GM
    Lab Chip; 2007 Nov; 7(11):1479-89. PubMed ID: 17960275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport and reaction in microscale segmented gas-liquid flow.
    Günther A; Khan SA; Thalmann M; Trachsel F; Jensen KF
    Lab Chip; 2004 Aug; 4(4):278-86. PubMed ID: 15269792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer.
    Zholkovskij EK; Masliyah JH
    Anal Chem; 2004 May; 76(10):2708-18. PubMed ID: 15144179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak compression and resolution for electrophoretic separations in diverging microchannels.
    Ross D; Ivory CF; Locascio LE; Van Cott KE
    Electrophoresis; 2004 Nov; 25(21-22):3694-704. PubMed ID: 15565692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels.
    Khirevich S; Höltzel A; Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Lab Chip; 2008 Nov; 8(11):1801-8. PubMed ID: 18941678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of oxygen transfer in three-phase fluidized-bed bioreactors by floating bubble breakers.
    Kang Y; Fan LT; Min BT; Kim SD
    Biotechnol Bioeng; 1991 Mar; 37(6):580-6. PubMed ID: 18600647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification method of microchannels for gas-liquid two-phase flow in microchips.
    Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T
    Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation efficiency of particle-packed HPLC microchips.
    Ehlert S; Kraiczek K; Mora JA; Dittmann M; Rozing GP; Tallarek U
    Anal Chem; 2008 Aug; 80(15):5945-50. PubMed ID: 18543954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic dispersion in shallow microchannels: the effect of cross-sectional shape.
    Ajdari A; Bontoux N; Stone HA
    Anal Chem; 2006 Jan; 78(2):387-92. PubMed ID: 16408918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropumping of liquid by directional growth and selective venting of gas bubbles.
    Meng DD; Kim CJ
    Lab Chip; 2008 Jun; 8(6):958-68. PubMed ID: 18497918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of miscible and immiscible flows in a microchannel using magnetic resonance imaging.
    Akpa BS; Matthews SM; Sederman AJ; Yunus K; Fisher AC; Johns ML; Gladden LF
    Anal Chem; 2007 Aug; 79(16):6128-34. PubMed ID: 17630718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic control of the interface between two liquids flowing through a horizontal or vertical microchannel.
    Stiles PJ; Fletcher DF
    Lab Chip; 2004 Apr; 4(2):121-4. PubMed ID: 15052351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External-circulation-loop airlift bioreactors: study of the liquid circulating velocity in highly viscous non-Newtonian liquids.
    Popović M; Robinson CW
    Biotechnol Bioeng; 1988 Jul; 32(3):301-12. PubMed ID: 18584751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-directed liquid flow inside microchannels.
    Zhao B; Moore JS; Beebe DJ
    Science; 2001 Feb; 291(5506):1023-6. PubMed ID: 11161212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic transport of charged samples through rectangular channels with small zeta potentials.
    Dutta D
    Anal Chem; 2008 Jun; 80(12):4723-30. PubMed ID: 18476719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.