These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18230213)

  • 1. Characterization of V-defects in InGaN single quantum well films at the nanometer level by high-spatial-resolution cathodoluminescence spectroscopy.
    Yoshikawa M; Murakami M; Ishida H; Harima H
    Appl Spectrosc; 2008 Jan; 62(1):86-90. PubMed ID: 18230213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron microscopy investigations of V defects in multiple InGaN/GaN quantum wells and InGaN quantum dots.
    Yang JR; Li WC; Tsai HL; Hsu JT; Shiojiri M
    J Microsc; 2010 Mar; 237(3):275-81. PubMed ID: 20500380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscopic Insights into InGaN/GaN Core-Shell Nanorods: Structure, Composition, and Luminescence.
    Müller M; Veit P; Krause FF; Schimpke T; Metzner S; Bertram F; Mehrtens T; Müller-Caspary K; Avramescu A; Strassburg M; Rosenauer A; Christen J
    Nano Lett; 2016 Sep; 16(9):5340-6. PubMed ID: 27517307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.
    De Winter DA; Lebbink MN; Wiggers De Vries DF; Post JA; Drury MR
    J Microsc; 2011 Sep; 243(3):315-26. PubMed ID: 21692799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.
    Estrin Y; Rich DH; Keller S; DenBaars SP
    J Phys Condens Matter; 2015 Jul; 27(26):265802. PubMed ID: 26076324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New approach to cathodoluminescence studies in application to InGaN/GaN laser diode degradation.
    Płuska M; Czerwinski A; Ratajczak J; Katcki J; Marona L; Czernecki R; Leszczyński M; Perlin P
    J Microsc; 2009 Nov; 236(2):137-42. PubMed ID: 19903240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells.
    Bergbauer W; Strassburg M; Kölper Ch; Linder N; Roder C; Lähnemann J; Trampert A; Fündling S; Li SF; Wehmann HH; Waag A
    Nanotechnology; 2010 Jul; 21(30):305201. PubMed ID: 20603534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution spin-polarized scanning electron microscopy (spin SEM).
    Kohashi T; Konoto M; Koike K
    J Electron Microsc (Tokyo); 2010; 59(1):43-52. PubMed ID: 19840986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An InGaN/GaN single quantum well improved by surface modification of GaN films.
    Fang ZL; Kang JY; Shen WZ
    Nanotechnology; 2009 Jan; 20(4):045401. PubMed ID: 19417316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g
    Meuret S; Coenen T; Woo SY; Ra YH; Mi Z; Polman A
    Nano Lett; 2018 Apr; 18(4):2288-2293. PubMed ID: 29546762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of high quality monatomic chromium films used in biological high resolution scanning electron microscopy.
    Apkarian RP
    Scanning Microsc; 1994; 8(2):289-99; discussion 299-301. PubMed ID: 7701300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-internal fields in nonpolar InGaN/GaN multi-quantum wells grown by the multi-buffer layer technique.
    Song H; Kim JS; Kim EK; Seo YG; Hwang SM
    Nanotechnology; 2010 Apr; 21(13):134026. PubMed ID: 20208099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved cathodoluminescence of luminescent materials using an EDX detector.
    Smet PF; Van Haecke JE; Poelman D
    J Microsc; 2008 Jul; 231(Pt 1):1-8. PubMed ID: 18638184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress dependence of optically active diamagnetic point defects in silicon oxynitride.
    Pezzotti G; Hosokawa K; Munisso MC; Leto A; Zhu W
    J Phys Chem A; 2007 Aug; 111(34):8367-73. PubMed ID: 17685596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution imaging of lateral distribution for the blue-light emission of an InGaN single-quantum-well structure utilizing the stimulated emission depletion effect.
    Kozawa Y; Kusama Y; Sato S; Yokoyama H
    Opt Express; 2014 Sep; 22(19):22575-82. PubMed ID: 25321726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen passivation: a proficient strategy to enhance the optical and photoelectrochemical performance of InGaN/GaN single-quantum-well nanorods.
    Reddeppa M; Park BG; Majumder S; Kim YH; Oh JE; Kim SG; Kim D; Kim MD
    Nanotechnology; 2020 Nov; 31(47):475201. PubMed ID: 32629439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-optic Based Spectral Cathodoluminescence: Simple and Economic Option for Use in Conventional and Environmental Scanning Electron Microscopy.
    Griffin BJ; Browne JR
    Microsc Microanal; 2000 Jan; 6(1):42-48. PubMed ID: 10675442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of normalizing cathodoluminescence images of electron transparent foils for thickness contrast applied to InGaN quantum wells.
    Boyall NM; Durose K; Watson IM
    J Microsc; 2003 Jan; 209(Pt 1):41-6. PubMed ID: 12535183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shedding new light on cathodoluminescence--a low voltage perspective.
    Erdman N; Nielsen C; Robertson VE
    Microsc Microanal; 2012 Dec; 18(6):1246-52. PubMed ID: 23211192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.