These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 18230736)
1. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Kurz WA; Stinson G; Rampley GJ; Dymond CC; Neilson ET Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1551-5. PubMed ID: 18230736 [TBL] [Abstract][Full Text] [Related]
2. Carbon profile of the managed forest sector in Canada in the 20th century: sink or source? Chen J; Colombo SJ; Ter-Mikaelian MT; Heath LS Environ Sci Technol; 2014 Aug; 48(16):9859-66. PubMed ID: 25075978 [TBL] [Abstract][Full Text] [Related]
3. Modelling forest carbon stock changes as affected by harvest and natural disturbances. II. EU-level analysis. Pilli R; Grassi G; Kurz WA; Moris JV; Viñas RA Carbon Balance Manag; 2016 Dec; 11(1):20. PubMed ID: 27635153 [TBL] [Abstract][Full Text] [Related]
4. Designing a carbon market that protects forests in developing countries. Niesten E; Frumhoff PC; Manion M; Hardner JJ Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1875-88. PubMed ID: 12460503 [TBL] [Abstract][Full Text] [Related]
5. Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Boucher D; Boulanger Y; Aubin I; Bernier PY; Beaudoin A; Guindon L; Gauthier S Ecol Appl; 2018 Jul; 28(5):1245-1259. PubMed ID: 29645330 [TBL] [Abstract][Full Text] [Related]
6. Assessing the Effects of Fire Disturbances and Timber Management on Carbon Storage in the Greater Yellowstone Ecosystem. Zhao F; Healey SP; Huang C; McCarter JB; Garrard C; Goeking SA; Zhu Z Environ Manage; 2018 Oct; 62(4):766-776. PubMed ID: 29947968 [TBL] [Abstract][Full Text] [Related]
7. The enduring world forest carbon sink. Pan Y; Birdsey RA; Phillips OL; Houghton RA; Fang J; Kauppi PE; Keith H; Kurz WA; Ito A; Lewis SL; Nabuurs GJ; Shvidenko A; Hashimoto S; Lerink B; Schepaschenko D; Castanho A; Murdiyarso D Nature; 2024 Jul; 631(8021):563-569. PubMed ID: 39020035 [TBL] [Abstract][Full Text] [Related]
8. A synthesis of current knowledge on forests and carbon storage in the United States. McKinley DC; Ryan MG; Birdsey RA; Giardina CP; Harmon ME; Heath LS; Houghton RA; Jackson RB; Morrison JF; Murray BC; Patakl DE; Skog KE Ecol Appl; 2011 Sep; 21(6):1902-24. PubMed ID: 21939033 [TBL] [Abstract][Full Text] [Related]
9. Effects of fuel and forest conservation on future levels of atmospheric carbon dioxide. Walker JC; Kasting JF Glob Planet Change; 1992; 97():151-89. PubMed ID: 11537854 [TBL] [Abstract][Full Text] [Related]
10. Improving carbon monitoring and reporting in forests using spatially-explicit information. Boisvenue C; Smiley BP; White JC; Kurz WA; Wulder MA Carbon Balance Manag; 2016 Dec; 11(1):23. PubMed ID: 27853482 [TBL] [Abstract][Full Text] [Related]
11. Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries' estimates for forest management. Pilli R; Grassi G; Kurz WA; Viñas RA; Guerrero NH Carbon Balance Manag; 2016 Dec; 11(1):5. PubMed ID: 27340427 [TBL] [Abstract][Full Text] [Related]
12. Forests, carbon and global climate. Malhi Y; Meir P; Brown S Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1567-91. PubMed ID: 12460485 [TBL] [Abstract][Full Text] [Related]
13. Climate change mitigation in Canada's forest sector: a spatially explicit case study for two regions. Smyth CE; Smiley BP; Magnan M; Birdsey R; Dugan AJ; Olguin M; Mascorro VS; Kurz WA Carbon Balance Manag; 2018 Sep; 13(1):11. PubMed ID: 30187146 [TBL] [Abstract][Full Text] [Related]
14. Changes in the use and management of forests for abating carbon emissions: issues and challenges under the Kyoto Protocol. Brown S; Swingland IR; Hanbury-Tenison R; Prance GT; Myers N Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1593-605. PubMed ID: 12460486 [TBL] [Abstract][Full Text] [Related]
15. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Kang S; Kimball JS; Running SW Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407 [TBL] [Abstract][Full Text] [Related]
16. Extreme wildfires in Canada and their contribution to global loss in tree cover and carbon emissions in 2023. MacCarthy J; Tyukavina A; Weisse MJ; Harris N; Glen E Glob Chang Biol; 2024 Jun; 30(6):e17392. PubMed ID: 38934256 [TBL] [Abstract][Full Text] [Related]
17. Global change and the mulga woodlands of southwest Queensland: greenhouse gas emissions, impacts, and adaptation. Howden SM; Moore JL; McKeon GM; Carter JO Environ Int; 2001 Sep; 27(2-3):161-6. PubMed ID: 11697664 [TBL] [Abstract][Full Text] [Related]
18. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. Ma Z; Peng C; Zhu Q; Chen H; Yu G; Li W; Zhou X; Wang W; Zhang W Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2423-7. PubMed ID: 22308340 [TBL] [Abstract][Full Text] [Related]
19. Spatiotemporal dynamics of forest ecosystem carbon budget in Guizhou: customisation and application of the CBM-CFS3 model for China. Tang Y; Shao Q; Shi T; Lu Z; Wu G Carbon Balance Manag; 2022 Jul; 17(1):10. PubMed ID: 35779178 [TBL] [Abstract][Full Text] [Related]
20. Fire as the dominant driver of central Canadian boreal forest carbon balance. Bond-Lamberty B; Peckham SD; Ahl DE; Gower ST Nature; 2007 Nov; 450(7166):89-92. PubMed ID: 17972883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]