These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18231182)

  • 1. Experimental evaluation of a hollow glass fiber.
    Bornstein A; Croitoru N
    Appl Opt; 1986 Feb; 25(3):355-8. PubMed ID: 18231182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible chalcogenide glass large-core multimode fibers for hundred-watt-level mid-infrared 2-5 µm laser transmission.
    Qi S; Li Y; Huang Z; Ren H; Sun W; Shi J; Wang F; Shen D; Feng X; Yang Z
    Opt Express; 2022 Apr; 30(9):14629-14644. PubMed ID: 35473202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuation measurement of infrared optical fibers by use of a hollow-taper-based coupling method.
    Ilev IK; Waynant RW; Bonaguidi MA
    Appl Opt; 2000 Jul; 39(19):3192-6. PubMed ID: 18349883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of copper oxide-coated hollow waveguides for CO2 laser radiation.
    Matsuura Y; Miura D; Miyagi M
    Appl Opt; 1999 Mar; 38(9):1700-3. PubMed ID: 18305793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared.
    Shi YW; Ito K; Matsuura Y; Miyagi M
    Opt Lett; 2005 Nov; 30(21):2867-9. PubMed ID: 16279452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core.
    Kosolapov AF; Pryamikov AD; Biriukov AS; Shiryaev VS; Astapovich MS; Snopatin GE; Plotnichenko VG; Churbanov MF; Dianov EM
    Opt Express; 2011 Dec; 19(25):25723-8. PubMed ID: 22273964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow infrared fibers fabricated by glass-drawing technique.
    Matsuura Y; Kasahara R; Katagiri T; Miyagi M
    Opt Express; 2002 Jun; 10(12):488-92. PubMed ID: 19436386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beam homogenizer for hollow-fiber delivery system of excimer laser light.
    Matsuura Y; Akiyama D; Miyagi M
    Appl Opt; 2003 Jun; 42(18):3505-8. PubMed ID: 12833951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single mode operation with mid-IR hollow fibers in the range 5.1-10.5 µm.
    Sampaolo A; Patimisco P; Kriesel JM; Tittel FK; Scamarcio G; Spagnolo V
    Opt Express; 2015 Jan; 23(1):195-204. PubMed ID: 25835666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses.
    Yilmaz O; Miyagi M; Matsuura Y
    Appl Opt; 2006 Sep; 45(27):7174-8. PubMed ID: 16946798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent hollow-core waveguide bundles for thermal imaging.
    Gal U; Harrington J; Ben-David M; Bledt C; Syzonenko N; Gannot I
    Appl Opt; 2010 Sep; 49(25):4700-9. PubMed ID: 20820210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and fabrication of a tellurite hollow-core anti-resonant fiber for mid-infrared applications.
    Zhu J; Feng S; Liu C; Cai L; Xu Y; Xiao X; Guo H
    Opt Express; 2024 Apr; 32(8):14067-14077. PubMed ID: 38859362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient coupling of a quantum cascade laser to a few-mode chalcogenide fiber.
    Cook J; Tan FA; Al Halawany A; Sincore A; Shah L; Abouraddy AF; Richardson M; Schepler KL
    Opt Express; 2019 Sep; 27(20):27682-27690. PubMed ID: 31684531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications.
    Zhang H; Chang Y; Xu Y; Liu C; Xiao X; Li J; Ma X; Wang Y; Guo H
    Opt Express; 2023 Feb; 31(5):7659-7670. PubMed ID: 36859893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of hollow fiberoptic tips for the conduction of Er:YAG laser.
    Alves PR; Aranha N; Alfredo E; Marchesan MA; Brugnera Junior A; Sousa-Neto MD
    Photomed Laser Surg; 2005 Aug; 23(4):410-5. PubMed ID: 16144486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light guidance up to 6.5 µm in borosilicate soft glass hollow-core microstructured optical waveguides.
    Perevoschikov S; Kaydanov N; Ermatov T; Bibikova O; Usenov I; Sakharova T; Bocharnikov A; Skibina J; Artyushenko V; Gorin D
    Opt Express; 2020 Sep; 28(19):27940-27950. PubMed ID: 32988076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of end-sealed hollow fibers.
    Mohri S; Kasai T; Abe Y; Shi YW; Matsuura Y; Miyagi M
    Appl Opt; 2002 Mar; 41(7):1251-5. PubMed ID: 11900000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides.
    Tsay C; Mujagić E; Madsen CK; Gmachl CF; Arnold CB
    Opt Express; 2010 Jul; 18(15):15523-30. PubMed ID: 20720932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.
    Thapa R; Gattass RR; Nguyen V; Chin G; Gibson D; Kim W; Shaw LB; Sanghera JS
    Opt Lett; 2015 Nov; 40(21):5074-7. PubMed ID: 26512522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of hollow fibers for the transmission of infrared radiation.
    Croitoru N; Dror J; Gannot I
    Appl Opt; 1990 Apr; 29(12):1805-9. PubMed ID: 20563086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.