These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 18231215)

  • 1. Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling.
    Bricaud A; Morel A
    Appl Opt; 1986 Feb; 25(4):571. PubMed ID: 18231215
    [No Abstract]   [Full Text] [Related]  

  • 2. Modeling the light attenuation and scattering by spherical phytoplanktonic cells: a retrieval of the bulk refractive index.
    Stramski D; Morel A; Bricaud A
    Appl Opt; 1988 Oct; 27(19):3954-6. PubMed ID: 20539496
    [No Abstract]   [Full Text] [Related]  

  • 3. An underwater light attenuation scheme for marine ecosystem models.
    Penta B; Lee Z; Kudela RM; Palacios SL; Gray DJ; Jolliff JK; Shulman IG
    Opt Express; 2008 Oct; 16(21):16581-91. PubMed ID: 18852767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.
    Flock ST; Wilson BC; Patterson MS
    Med Phys; 1987; 14(5):835-41. PubMed ID: 3683313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: realistic input data for NDT numerical modeling.
    Ploix MA; Guy P; Chassignole B; Moysan J; Corneloup G; El Guerjouma R
    Ultrasonics; 2014 Sep; 54(7):1729-36. PubMed ID: 24759567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of copper sulphate treatment on natural phytoplanktonic communities.
    Le Jeune AH; Charpin M; Deluchat V; Briand JF; Lenain JF; Baudu M; Amblard C
    Aquat Toxicol; 2006 Dec; 80(3):267-80. PubMed ID: 17095105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two efficient approaches for modeling of Raman scattering in homogeneous turbid media.
    Krasnikov I; Suhr C; Seteikin A; Roth B; Meinhardt-Wollweber M
    J Opt Soc Am A Opt Image Sci Vis; 2016 Mar; 33(3):426-33. PubMed ID: 26974912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated compensation of light attenuation in confocal microscopy by exact histogram specification.
    Stanciu SG; Stanciu GA; Coltuc D
    Microsc Res Tech; 2010 Mar; 73(3):165-75. PubMed ID: 19725065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential scattering of circularly polarized light as a unique probe of polynucleosome superstructures. A simulation by multiple scattering of dipoles.
    Zietz S; Belmont A; Nicolini C
    Cell Biophys; 1983 Sep; 5(3):163-87. PubMed ID: 6199111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A field theoretical restoration method for images degraded by non-uniform light attenuation : an application for light microscopy.
    Lee HK; Uddin MS; Sankaran S; Hariharan S; Ahmed S
    Opt Express; 2009 Jul; 17(14):11294-308. PubMed ID: 19582043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description.
    Lhuillier PE; Chassignole B; Oudaa M; Kerhervé SO; Rupin F; Fouquet T
    Ultrasonics; 2017 Jul; 78():40-50. PubMed ID: 28324775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments.
    Piskozub J; Stramski D; Terrill E; Melville WK
    Appl Opt; 2004 Aug; 43(24):4723-31. PubMed ID: 15352398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers.
    Sokoletsky LG; Budak VP; Shen F; Kokhanovsky AA
    Appl Opt; 2014 Jan; 53(3):459-68. PubMed ID: 24514134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium.
    Tseng SH
    Methods; 2018 Mar; 136():75-80. PubMed ID: 29127044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optical properties of human normal small intestine tissue with theoretical model of optics about biological tissues at Ar+ laser and 532 nm laser and their linearly polarized laser irradiation in vitro].
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 May; 24(5):524-8. PubMed ID: 15769036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of scattering and depolarizing electro-optic devices. II. Device simulation.
    Shames PE; Sun PC; Fainman Y
    Appl Opt; 1998 Jun; 37(17):3726-34. PubMed ID: 18273344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of light scattering in different regimes of surface roughness.
    Schröder S; Duparré A; Coriand L; Tünnermann A; Penalver DH; Harvey JE
    Opt Express; 2011 May; 19(10):9820-35. PubMed ID: 21643239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two glare measurement methods through light scattering modeling.
    Beckman C; Hård S; Hård AL; Sjöstrand J
    Optom Vis Sci; 1992 Jul; 69(7):532-7. PubMed ID: 1635756
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.