These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 18231251)

  • 1. Photon flux gradients in layered turbid media: application to biological tissues.
    Fukshansky-Kazarinova N; Lork W; Schafer E; Fukshansky L
    Appl Opt; 1986 Mar; 25(5):780-8. PubMed ID: 18231251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple scattering calculations for technology.
    Mudgett PS; Richards LW
    Appl Opt; 1971 Jul; 10(7):1485-502. PubMed ID: 20111152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of optical parameters in a living tissue by solving the inverse problem of the multiflux radiative transfer.
    Fukshansky L; Fukshansky-Kazarinova N; Remisowsky AM
    Appl Opt; 1991 Aug; 30(22):3145-53. PubMed ID: 20706367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical properties of human normal small intestine tissue determined by Kubelka-Munk method in vitro.
    Wei HJ; Xing D; Wu GY; Jin Y; Gu HM
    World J Gastroenterol; 2003 Sep; 9(9):2068-72. PubMed ID: 12970908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A specific feature of the procedure for determination of optical properties of turbid biological tissues and media in calculation tasks of medical noninvasive spectrophotometry].
    Rogatkin DA
    Med Tekh; 2007; (2):10-6. PubMed ID: 17650641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the telegrapher's equation and multiple-flux theories for calculating the transmittance and reflectance of a diffuse absorbing slab.
    Kong SH; Shore JD
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):702-10. PubMed ID: 17301860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revised Kubelka-Munk theory. III. A general theory of light propagation in scattering and absorptive media.
    Yang L; Miklavcic SJ
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1866-73. PubMed ID: 16211813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative properties of optically thick fluorescent turbid media.
    Kokhanovsky AA
    J Opt Soc Am A Opt Image Sci Vis; 2009 Aug; 26(8):1896-1900. PubMed ID: 19649132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling scattering and absorption of turbid samples using a simple empirical relation between coefficients of the Kubelka-Munk and radiative transfer theories.
    Gaonkar HA; Kumar D; Ramasubramaniam R; Roy A
    Appl Opt; 2014 May; 53(13):2892-8. PubMed ID: 24921877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging the optical properties of turbid media with single-pixel detection based on the Kubelka-Munk model.
    Lenz AJM; Clemente P; Climent V; Lancis J; Tajahuerce E
    Opt Lett; 2019 Oct; 44(19):4797-4800. PubMed ID: 31568445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory of light propagation incorporating scattering and absorption in turbid media.
    Yang L; Miklavcic SJ
    Opt Lett; 2005 Apr; 30(7):792-4. PubMed ID: 15832940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of two-layered turbid media with time-resolved reflectance.
    Kienle A; Glanzmann T; Wagnières G; Bergh H
    Appl Opt; 1998 Oct; 37(28):6852-62. PubMed ID: 18301502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the validity of two-flux and four-flux models for light scattering in translucent layers: angular distribution of internally reflected light at the interfaces.
    Gautheron A; Clerc R; Duveiller V; Simonot L; Montcel B; Hébert M
    Opt Express; 2024 Mar; 32(6):9042-9060. PubMed ID: 38571147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified Kubelka-Munk equations for localized waves inside a layered medium.
    Haney MM; van Wijk K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036601. PubMed ID: 17500803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances.
    Shimada M; Sato C; Hoshi Y; Yamada Y
    Phys Med Biol; 2009 Aug; 54(16):5057-71. PubMed ID: 19652290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of absorption and scattering coefficients for nonhomogeneous media. 2: experiment.
    Egan WG; Hilgeman T; Reichman J
    Appl Opt; 1973 Aug; 12(8):1816-23. PubMed ID: 20125612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correcting remission and transmission spectra of plant tissue measured in glass cuvettes: a technique.
    Seyfried M; Fukshansky L; Schafer E
    Appl Opt; 1983 Feb; 22(3):492-6. PubMed ID: 18195815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity studies for imaging a spherical object embedded in a spherically symmetric, two-layer turbid medium with photon-density waves.
    Yao Y; Barbour RL; Wang Y; Graber HL; Chang J
    Appl Opt; 1996 Feb; 35(4):735-51. PubMed ID: 21069064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffuse photon remission from thick opaque media of the high absorption/scattering ratio beyond what is accountable by the Kubelka-Munk function.
    Piao D; Sun T
    Opt Lett; 2021 Mar; 46(6):1225-1228. PubMed ID: 33720153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension of the Kubelka-Munk theory to an arbitrary substrate: a Monte Carlo approach.
    Alcaraz de la Osa R; García Alonso A; Ortiz D; González F; Moreno F; Saiz JM
    J Opt Soc Am A Opt Image Sci Vis; 2016 Oct; 33(10):2053-2060. PubMed ID: 27828110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.