These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation. Migheli R; Puggioni G; Dedola S; Rocchitta G; Calia G; Bazzu G; Esposito G; Lowry JP; O'Neill RD; Desole MS; Miele E; Serra PA Anal Biochem; 2008 Sep; 380(2):323-30. PubMed ID: 18577368 [TBL] [Abstract][Full Text] [Related]
43. On-chip counting the number and the percentage of CD4+ T lymphocytes. Wang YN; Kang Y; Xu D; Chon CH; Barnett L; Kalams SA; Li D; Li D Lab Chip; 2008 Feb; 8(2):309-15. PubMed ID: 18231671 [TBL] [Abstract][Full Text] [Related]
44. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Li X; Majdi S; Dunevall J; Fathali H; Ewing AG Angew Chem Int Ed Engl; 2015 Oct; 54(41):11978-82. PubMed ID: 26266819 [TBL] [Abstract][Full Text] [Related]
45. Ultrastructural and biochemical characterization of catecholamine release mechanisms in cultured human pheochromocytoma cells. Chou YY; Lee YS Chin Med J (Engl); 1998 Nov; 111(11):1018-24. PubMed ID: 11189207 [TBL] [Abstract][Full Text] [Related]
46. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Kozminski KD; Gutman DA; Davila V; Sulzer D; Ewing AG Anal Chem; 1998 Aug; 70(15):3123-30. PubMed ID: 11013717 [TBL] [Abstract][Full Text] [Related]
47. Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Malic L; Veres T; Tabrizian M Biosens Bioelectron; 2009 Mar; 24(7):2218-24. PubMed ID: 19136248 [TBL] [Abstract][Full Text] [Related]
48. Electrochemical measurement of quantal exocytosis using microchips. Gillis KD; Liu XA; Marcantoni A; Carabelli V Pflugers Arch; 2018 Jan; 470(1):97-112. PubMed ID: 28866728 [TBL] [Abstract][Full Text] [Related]
49. Nanofluidic redox cycling amplification for the selective detection of catechol. Wolfrum B; Zevenbergen M; Lemay S Anal Chem; 2008 Feb; 80(4):972-7. PubMed ID: 18193890 [TBL] [Abstract][Full Text] [Related]
50. Development of an open stand-alone platform for regenerable automated microarrays. Kloth K; Niessner R; Seidel M Biosens Bioelectron; 2009 Mar; 24(7):2106-12. PubMed ID: 19110413 [TBL] [Abstract][Full Text] [Related]
51. General concept of high-performance amperometric detector for microfluidic (bio)analytical chips. Amatore C; Da Mota N; Sella C; Thouin L Anal Chem; 2008 Jul; 80(13):4976-85. PubMed ID: 18470995 [TBL] [Abstract][Full Text] [Related]
52. Fabrication of size-controllable ultrasmall-disk electrode: monitoring single vesicle release kinetics at tiny structures with high spatio-temporal resolution. Li ZY; Zhou W; Wu ZX; Zhang RY; Xu T Biosens Bioelectron; 2009 Jan; 24(5):1358-64. PubMed ID: 18804366 [TBL] [Abstract][Full Text] [Related]
53. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells. Li LM; Wang W; Zhang SH; Chen SJ; Guo SS; Français O; Cheng JK; Huang WH Anal Chem; 2011 Dec; 83(24):9524-30. PubMed ID: 22087849 [TBL] [Abstract][Full Text] [Related]
54. Electrophoretic total analysis of trace tetracycline antibiotics in a microchip with amperometry. Lee KS; Park SH; Won SY; Shim YB Electrophoresis; 2009 Sep; 30(18):3219-27. PubMed ID: 19722202 [TBL] [Abstract][Full Text] [Related]
55. Dielectrophoretic capture of mammalian cells using transparent indium tin oxide electrodes in microfluidic systems. Sankaran B; Racic M; Tona A; Rao MV; Gaitan M; Forry SP Electrophoresis; 2008 Dec; 29(24):5047-54. PubMed ID: 19130589 [TBL] [Abstract][Full Text] [Related]
56. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. Wang TH; Peng Y; Zhang C; Wong PK; Ho CM J Am Chem Soc; 2005 Apr; 127(15):5354-9. PubMed ID: 15826173 [TBL] [Abstract][Full Text] [Related]
57. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis. Liu T; Bao H; Zhang L; Chen G Electrophoresis; 2009 Sep; 30(18):3265-8. PubMed ID: 19705354 [TBL] [Abstract][Full Text] [Related]
58. Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate. Salimi A; Kavosi B; Babaei A; Hallaj R Anal Chim Acta; 2008 Jun; 618(1):43-53. PubMed ID: 18501244 [TBL] [Abstract][Full Text] [Related]
59. Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays. Gao C; Sun X; Gillis KD Biomed Microdevices; 2013 Jun; 15(3):445-51. PubMed ID: 23329291 [TBL] [Abstract][Full Text] [Related]
60. High-performance UV-curable epoxy resin-based microarray and microfluidic immunoassay devices. Yu L; Liu Y; Gan Y; Li CM Biosens Bioelectron; 2009 Jun; 24(10):2997-3002. PubMed ID: 19346122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]