BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18231674)

  • 1. Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems.
    Chung AJ; Kim D; Erickson D
    Lab Chip; 2008 Feb; 8(2):330-8. PubMed ID: 18231674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release.
    Chung AJ; Huh YS; Erickson D
    Biomed Microdevices; 2009 Aug; 11(4):861-7. PubMed ID: 19353273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.
    Kim J; Surapaneni R; Gale BK
    Lab Chip; 2009 May; 9(9):1290-3. PubMed ID: 19370251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection.
    Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S
    Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-voltage electrokinetic nanochannel drug delivery system.
    Fine D; Grattoni A; Zabre E; Hussein F; Ferrari M; Liu X
    Lab Chip; 2011 Aug; 11(15):2526-34. PubMed ID: 21677944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target delivery in a microfluidic immunosensor.
    Golden JP; Floyd-Smith TM; Mott DR; Ligler FS
    Biosens Bioelectron; 2007 May; 22(11):2763-7. PubMed ID: 17223338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open-access microfluidic patch-clamp array with raised lateral cell trapping sites.
    Lau AY; Hung PJ; Wu AR; Lee LP
    Lab Chip; 2006 Dec; 6(12):1510-5. PubMed ID: 17203154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device for immunoassays based on surface plasmon resonance imaging.
    Luo Y; Yu F; Zare RN
    Lab Chip; 2008 May; 8(5):694-700. PubMed ID: 18432338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field-effect flow control in a polydimethylsiloxane-based microfluidic system.
    Buch JS; Wang PC; DeVoe DL; Lee CS
    Electrophoresis; 2001 Oct; 22(18):3902-7. PubMed ID: 11700719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine.
    Liang RP; Gan GH; Qiu JD
    J Sep Sci; 2008 Aug; 31(15):2860-7. PubMed ID: 18655017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase.
    Blas M; Delaunay N; Rocca JL
    J Sep Sci; 2007 Nov; 30(17):3043-9. PubMed ID: 17924367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated thin-film polymer/fullerene photodetectors for on-chip microfluidic chemiluminescence detection.
    Wang X; Hofmann O; Das R; Barrett EM; deMello AJ; deMello JC; Bradley DD
    Lab Chip; 2007 Jan; 7(1):58-63. PubMed ID: 17180205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays.
    Sung WC; Chen HH; Makamba H; Chen SH
    Anal Chem; 2009 Oct; 81(19):7967-73. PubMed ID: 19722534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane).
    Weibel DB; Siegel AC; Lee A; George AH; Whitesides GM
    Lab Chip; 2007 Dec; 7(12):1832-6. PubMed ID: 18030408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device.
    Ma B; Zhang G; Qin J; Lin B
    Lab Chip; 2009 Jan; 9(2):232-8. PubMed ID: 19107278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.