These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18231760)

  • 1. Three-dimensional finite element analysis of the mechanical stress on root from orthodontic tooth movement by sliding mechanics.
    Li P; Mao J; Peng Z
    J Huazhong Univ Sci Technolog Med Sci; 2007 Dec; 27(6):745-7. PubMed ID: 18231760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mandibular canine intrusion with the segmented arch technique: A finite element method study.
    Caballero GM; Carvalho Filho OA; Hargreaves BO; Brito HH; Magalhães Júnior PA; Oliveira DD
    Am J Orthod Dentofacial Orthop; 2015 Jun; 147(6):691-7. PubMed ID: 26038072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numeric simulations of en-masse space closure with sliding mechanics.
    Kojima Y; Fukui H
    Am J Orthod Dentofacial Orthop; 2010 Dec; 138(6):702.e1-6; discussion 702-4. PubMed ID: 21130318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis].
    Liu DW; Li J; Guo L; Rong QG; Zhou YH
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Feb; 50(1):141-147. PubMed ID: 29483737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulations of canine retraction with T-loop springs based on the updated moment-to-force ratio.
    Kojima Y; Fukui H
    Eur J Orthod; 2012 Feb; 34(1):10-8. PubMed ID: 21135033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model of apical force distribution from orthodontic tooth movement.
    Rudolph DJ; Willes PMG ; Sameshima GT
    Angle Orthod; 2001 Apr; 71(2):127-31. PubMed ID: 11302589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective en-masse retraction design with orthodontic mini-implant anchorage: a finite element analysis.
    Sung SJ; Jang GW; Chun YS; Moon YS
    Am J Orthod Dentofacial Orthop; 2010 May; 137(5):648-57. PubMed ID: 20451784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical effects of corticotomy approaches on dentoalveolar structures during canine retraction: A 3-dimensional finite element analysis.
    Yang C; Wang C; Deng F; Fan Y
    Am J Orthod Dentofacial Orthop; 2015 Sep; 148(3):457-65. PubMed ID: 26321344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement.
    Ammar HH; Ngan P; Crout RJ; Mucino VH; Mukdadi OM
    Am J Orthod Dentofacial Orthop; 2011 Jan; 139(1):e59-71. PubMed ID: 21195258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal loading conditions for controlled movement of anterior teeth in sliding mechanics.
    Tominaga JY; Tanaka M; Koga Y; Gonzales C; Kobayashi M; Yoshida N
    Angle Orthod; 2009 Nov; 79(6):1102-7. PubMed ID: 19852600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an orthodontic simulator for measurement of orthodontic forces.
    Kuo B; Takakuda K; Miyairi H
    J Med Dent Sci; 2001 Mar; 48(1):15-21. PubMed ID: 12160238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element method analysis of the periodontal ligament in mandibular canine movement with transparent tooth correction treatment.
    Cai Y; Yang X; He B; Yao J
    BMC Oral Health; 2015 Sep; 15():106. PubMed ID: 26337291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stresses induced by edgewise appliances in the periodontal ligament--a finite element study.
    McGuinness N; Wilson AN; Jones M; Middleton J; Robertson NR
    Angle Orthod; 1992; 62(1):15-22. PubMed ID: 1554158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM.
    Sung SJ; Baik HS; Moon YS; Yu HS; Cho YS
    Am J Orthod Dentofacial Orthop; 2003 Apr; 123(4):441-50. PubMed ID: 12695772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the effect of power arm locations on tooth movement in extraction space closure with miniscrew anchorage in customized lingual orthodontic treatment.
    Feng Y; Kong WD; Cen WJ; Zhou XZ; Zhang W; Li QT; Guo HY; Yu JW
    Am J Orthod Dentofacial Orthop; 2019 Aug; 156(2):210-219. PubMed ID: 31375231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional finite element analysis to evaluate biomechanical effects of different alveolar decortication approaches on rate of canine retraction.
    Gupta S; Ahuja S; Bhambri E; Jaura BS; Ahuja V
    Int Orthod; 2019 Jun; 17(2):216-226. PubMed ID: 31000446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method.
    Çifter M; Saraç M
    Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):e233-41. PubMed ID: 22051501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mandibular anterior intrusion using miniscrews for skeletal anchorage: A 3-dimensional finite element analysis.
    González Del Castillo McGrath M; Araujo-Monsalvo VM; Murayama N; Martínez-Cruz M; Justus-Doczi R; Domínguez-Hernández VM; Ondarza-Rovira R
    Am J Orthod Dentofacial Orthop; 2018 Oct; 154(4):469-476. PubMed ID: 30268257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics.
    Kojima Y; Kawamura J; Fukui H
    Am J Orthod Dentofacial Orthop; 2012 Oct; 142(4):501-8. PubMed ID: 22999674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On optimum orthodontic force theory as applied to canine retraction.
    Nikolai RJ
    Am J Orthod; 1975 Sep; 68(3):290-302. PubMed ID: 1057850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.