BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18232363)

  • 1. Analysis of current density and specific absorption rate in biological tissue surrounding transcutaneous transformer for an artificial heart.
    Shiba K; Nukaya M; Tsuji T; Koshiji K
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):205-13. PubMed ID: 18232363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.
    Shiba K; Nagato T; Tsuji T; Koshiji K
    IEEE Trans Biomed Eng; 2008 Jul; 55(7):1864-71. PubMed ID: 18595805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of current density and specific absorption rate in biological tissue surrounding an air-core type of transcutaneous transformer for an artificial heart.
    Shiba K; Nukaya M; Tsuji T; Koshiji K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5392-5. PubMed ID: 17945897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of specific absorption rate and current density in an energy transmission system for a wireless capsule endoscope.
    Shiba K; Nagato T; Tsuji T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6052-5. PubMed ID: 18003394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.
    Yang Z; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2527-31. PubMed ID: 19049934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of specific absorption rate and current density in biological tissues surrounding energy transmission transformer for an artificial heart: using magnetic resonance imaging-based human body model.
    Higaki N; Shiba K
    Artif Organs; 2010 Jan; 34(1):E1-9. PubMed ID: 20420594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of a wireless power transmission system for an active capsule endoscope.
    Xin W; Yan G; Wang W
    Int J Med Robot; 2010 Mar; 6(1):113-22. PubMed ID: 20112281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2006 May; 51(9):2339-52. PubMed ID: 16625046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distant energy transfer for artificial human implants.
    Theodoridis MP; Mollov SV
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1931-8. PubMed ID: 16285397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmitting electric energy through a closed elastic wall by acoustic waves and piezoelectric transducers.
    Yang Z; Guo S; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1380-6. PubMed ID: 18599426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.
    Hirata A; Asano T; Fujiwara O
    Phys Med Biol; 2007 Aug; 52(16):5013-23. PubMed ID: 17671350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rosen-type Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal piezoelectric transformer.
    Wang F; Wu J; Jia Y; Zhu H; Zhao X; Luo H
    Rev Sci Instrum; 2007 Jul; 78(7):073903. PubMed ID: 17672769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement in magnetic field immunity of externally-coupled transcutaneous energy transmission system for a totally implantable artificial heart.
    Yamamoto T; Koshiji K; Homma A; Tatsumi E; Taenaka Y
    J Artif Organs; 2008; 11(4):238-40. PubMed ID: 19184291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter system.
    Zan P; Yang BH; Shao Y; Yan GZ; Liu H
    J Zhejiang Univ Sci B; 2010 Dec; 11(12):931-6. PubMed ID: 21121071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; BĂ©langer G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characteristics of thin disc piezoelectric transformers based on piezoelectric buzzers with gap circles.
    Chang KT; Lee CW
    Ultrasonics; 2008 Apr; 48(2):91-7. PubMed ID: 18221977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.
    Burdt R; Curry RD
    Rev Sci Instrum; 2007 Jul; 78(7):074703. PubMed ID: 17672783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculated SAR distributions in a human voxel phantom due to the reflection of electromagnetic fields from a ground plane between 65 MHz and 2 GHz.
    Findlay RP; Dimbylow PJ
    Phys Med Biol; 2008 May; 53(9):2277-89. PubMed ID: 18401062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and assessment of novel artificial anal sphincter with adaptive transcutaneous energy transfer system.
    Ke L; Yan G; Wang Z; Yan S; Liu Z
    J Med Eng Technol; 2015 Feb; 39(2):159-67. PubMed ID: 25626127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.