These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 18232500)

  • 1. [A novel method for automated detection of activation time].
    Zhang C; Zhang S; Li Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Dec; 24(6):1390-3. PubMed ID: 18232500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interactive graphical system for automated mapping and display of cardiac rhythms.
    He YH; Ghanem RN; Waldo AL; Rudy Y
    J Electrocardiol; 1999 Jul; 32(3):225-41. PubMed ID: 10465566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study.
    Steinhaus BM
    Circ Res; 1989 Mar; 64(3):449-62. PubMed ID: 2917378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of measurements derived from intracardiac unipolar electrograms: A simulation study.
    van Duijvenboden S; Orini M; Taggart P; Hanson B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():76-9. PubMed ID: 26736204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conducting randomized trials in the electrophysiology laboratory: lessons from a randomized comparison of recording methods during pulmonary vein isolation by segmental ostial ablation.
    Oral H; Morady F
    Card Electrophysiol Rev; 2003 Sep; 7(3):247-51. PubMed ID: 14739723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced-order modeling for cardiac electrophysiology. Application to parameter identification.
    Boulakia M; Schenone E; Gerbeau JF
    Int J Numer Method Biomed Eng; 2012; 28(6-7):727-44. PubMed ID: 25364848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization.
    Alagoz C; Cohen AR; Frisch DR; Tunç B; Phatharodom S; Guez A
    Comput Methods Programs Biomed; 2018 Jul; 161():15-24. PubMed ID: 29852958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indices of bipolar complex fractionated atrial electrograms correlate poorly with each other and atrial fibrillation substrate complexity.
    Lau DH; Maesen B; Zeemering S; Kuklik P; van Hunnik A; Lankveld TA; Bidar E; Verheule S; Nijs J; Maessen J; Crijns H; Sanders P; Schotten U
    Heart Rhythm; 2015 Jul; 12(7):1415-23. PubMed ID: 25771914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stationary wavelet transform as an efficient reductor of powerline interference for atrial bipolar electrograms in cardiac electrophysiology.
    Martínez-Iniesta M; Ródenas J; Rieta JJ; Alcaraz R
    Physiol Meas; 2019 Jul; 40(7):075003. PubMed ID: 31239416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer simulation of clinical electrophysiological study.
    Zhu X; Wei D; Okazaki O
    Pacing Clin Electrophysiol; 2012 Jun; 35(6):718-29. PubMed ID: 22554232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reliability analysis of cardiac repolarization time markers.
    Scacchi S; Franzone PC; Pavarino LF; Taccardi B
    Math Biosci; 2009 Jun; 219(2):113-28. PubMed ID: 19328815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cardiac fibrillation using phase mapping.
    Clayton RH; Nash MP
    Card Electrophysiol Clin; 2015 Mar; 7(1):49-58. PubMed ID: 25784022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference.
    Lenis G; Pilia N; Oesterlein T; Luik A; Schmitt C; Dössel O
    Biomed Tech (Berl); 2016 Feb; 61(1):37-56. PubMed ID: 26136298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of an automatic cardiac activation detector for bipolar electrograms.
    Simpson EV; Ideker RE; Cabo C; Yabe S; Zhou X; Melnick SB; Smith WM
    Med Biol Eng Comput; 1993 Mar; 31(2):118-28. PubMed ID: 8331991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation and projection of spiral wave trajectories during atrial fibrillation: a computational study.
    Pashaei A; Bayer J; Meillet V; Dubois R; Vigmond E
    Card Electrophysiol Clin; 2015 Mar; 7(1):37-47. PubMed ID: 25784021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation.
    Scherr D; Dalal D; Cheema A; Cheng A; Henrikson CA; Spragg D; Marine JE; Berger RD; Calkins H; Dong J
    Heart Rhythm; 2007 Aug; 4(8):1013-20. PubMed ID: 17675074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four digital algorithms for activation detection from unipolar epicardial electrograms.
    Blanchard SM; Smith WM; Damiano RJ; Molter DW; Ideker RE; Lowe JE
    IEEE Trans Biomed Eng; 1989 Feb; 36(2):256-61. PubMed ID: 2917771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex fractionated atrial electrograms: can they be made simple?
    Nattel S
    Heart Rhythm; 2008 Jun; 5(6):855-6. PubMed ID: 18534370
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrocardiographic imaging of heart rhythm disorders: from bench to bedside.
    Rudy Y; Lindsay BD
    Card Electrophysiol Clin; 2015 Mar; 7(1):17-35. PubMed ID: 25722753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex fractionated atrial electrograms in atrial fibrillation: a promising target for ablation, but why, when, and how?
    Kottkamp H; Hindricks G
    Heart Rhythm; 2007 Aug; 4(8):1021-3. PubMed ID: 17675075
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.