BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18232669)

  • 1. Discriminating the indistinguishable sapwood from heartwood in discolored ancient wood by direct molecular mapping of specific extractives using time-of-flight secondary ion mass spectrometry.
    Saito K; Mitsutani T; Imai T; Matsushita Y; Fukushima K
    Anal Chem; 2008 Mar; 80(5):1552-7. PubMed ID: 18232669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal trends in
    Ohashi S; Kuroda K; Takano T; Suzuki Y; Fujiwara T; Abe H; Kagawa A; Sugiyama M; Kubojima Y; Zhang C; Yamamoto K
    J Environ Radioact; 2017 Nov; 178-179():335-342. PubMed ID: 28965024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accumulation pattern of ferruginol in the heartwood-forming Cryptomeria japonica xylem as determined by time-of-flight secondary ion mass spectrometry and quantity analysis.
    Kuroda K; Fujiwara T; Hashida K; Imai T; Kushi M; Saito K; Fukushima K
    Ann Bot; 2014 May; 113(6):1029-36. PubMed ID: 24651372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus.
    Cheng SS; Chang HT; Wu CL; Chang ST
    Bioresour Technol; 2007 Jan; 98(2):456-9. PubMed ID: 16495050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of ferruginol, a diterpene phenol, in Cryptomeria japonica heartwood by time-of-flight secondary ion mass spectrometry.
    Imai T; Tanabe K; Kato T; Fukushima K
    Planta; 2005 Jun; 221(4):549-56. PubMed ID: 15856284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic effect of heartwood extractives and quaternary ammonium compounds on termite resistance of treated wood.
    Hwang WJ; Kartal SN; Yoshimura T; Imamura Y
    Pest Manag Sci; 2007 Jan; 63(1):90-5. PubMed ID: 17054087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae).
    Nagai S; Utsumi Y
    Am J Bot; 2012 Sep; 99(9):1553-61. PubMed ID: 22917949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is wood pre-treatment essential for tree-ring nitrogen concentration and isotope analysis?
    Doucet A; Savard MM; Bégin C; Smirnoff A
    Rapid Commun Mass Spectrom; 2011 Feb; 25(4):469-75. PubMed ID: 21259354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in Chemical Constituents between
    Wei L; Ma R; Fu Y
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical characterization and extractives composition of heartwood and sapwood from Quercus faginea.
    Miranda I; Sousa V; Ferreira J; Pereira H
    PLoS One; 2017; 12(6):e0179268. PubMed ID: 28614371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UPLC-ESI-MS/MS-Based Widely Targeted Metabolomics Analysis of Wood Metabolites in Teak (
    Yang G; Liang K; Zhou Z; Wang X; Huang G
    Molecules; 2020 May; 25(9):. PubMed ID: 32392900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska.
    Kelsey RG; Hennon PE; Huso M; Karchesy JJ
    J Chem Ecol; 2005 Nov; 31(11):2653-70. PubMed ID: 16273433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping Dicorynia guianensis Amsh. wood constituents by submicron resolution cluster-TOF-SIMS imaging.
    Vanbellingen QP; Fu T; Bich C; Amusant N; Stien D; Della-Negra S; Touboul D; Brunelle A
    J Mass Spectrom; 2016 Jun; 51(6):412-23. PubMed ID: 27270864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal variation of heartwood formation in Larix kaempferi.
    Nakada R; Fukatsu E
    Tree Physiol; 2012 Dec; 32(12):1497-508. PubMed ID: 23135738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial patterns of carbon isotopes in the xylem extractives and cellulose of Douglas-fir.
    Taylor AM; Brooks JR; Lachenbruch B; Morrell JJ
    Tree Physiol; 2007 Jun; 27(6):921-7. PubMed ID: 17331910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous saccharification and fermentation of Eastern redcedar heartwood and sapwood using a novel size reduction technique.
    Ramachandriya KD; Wilkins M; Pardo-Planas O; Atiyeh HK; Dunford NT; Hiziroglu S
    Bioresour Technol; 2014 Jun; 161():1-9. PubMed ID: 24675429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using electrical resistivity tomography to differentiate sapwood from heartwood: application to conifers.
    Guyot A; Ostergaard KT; Lenkopane M; Fan J; Lockington DA
    Tree Physiol; 2013 Feb; 33(2):187-94. PubMed ID: 23329335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heartwood and sapwood in eucalyptus trees: non-conventional approach to wood quality.
    Cherelli SG; Sartori MMP; Próspero AG; Ballarin AW
    An Acad Bras Cienc; 2018; 90(1):425-438. PubMed ID: 29641766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry.
    Saito K; Watanabe Y; Shirakawa M; Matsushita Y; Imai T; Koike T; Sano Y; Funada R; Fukazawa K; Fukushima K
    Plant J; 2012 Feb; 69(3):542-52. PubMed ID: 21978273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of time-of-flight-secondary ion mass spectrometry for the detection of enzyme activity on solid wood substrates.
    Goacher RE; Edwards EA; Yakunin AF; Mims CA; Master ER
    Anal Chem; 2012 May; 84(10):4443-51. PubMed ID: 22507179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.