These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18232797)

  • 1. Lorenz number determination of the dissipationless nature of the anomalous Hall effect in itinerant ferromagnets.
    Onose Y; Shiomi Y; Tokura Y
    Phys Rev Lett; 2008 Jan; 100(1):016601. PubMed ID: 18232797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous Nernst and Righi-Leduc Effects in Mn_{3}Sn: Berry Curvature and Entropy Flow.
    Li X; Xu L; Ding L; Wang J; Shen M; Lu X; Zhu Z; Behnia K
    Phys Rev Lett; 2017 Aug; 119(5):056601. PubMed ID: 28949739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous Hall effect in ferromagnetic semiconductors.
    Jungwirth T; Niu Q; MacDonald AH
    Phys Rev Lett; 2002 May; 88(20):207208. PubMed ID: 12005602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4-xBrx.
    Lee WL; Watauchi S; Miller VL; Cava RJ; Ong NP
    Science; 2004 Mar; 303(5664):1647-9. PubMed ID: 15016994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The giant anomalous Hall effect in the ferromagnet Fe3Sn2--a frustrated kagome metal.
    Kida T; Fenner LA; Dee AA; Terasaki I; Hagiwara M; Wills AS
    J Phys Condens Matter; 2011 Mar; 23(11):112205. PubMed ID: 21358031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossover behavior of the anomalous Hall effect and anomalous nernst effect in itinerant ferromagnets.
    Miyasato T; Abe N; Fujii T; Asamitsu A; Onoda S; Onose Y; Nagaosa N; Tokura Y
    Phys Rev Lett; 2007 Aug; 99(8):086602. PubMed ID: 17930968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lorenz number in high T(c) superconductors: evidence for bipolarons.
    Lee KK; Alexandrov AS; Liang WY
    Phys Rev Lett; 2003 May; 90(21):217001. PubMed ID: 12786580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor.
    Toyosaki H; Fukumura T; Yamada Y; Nakajima K; Chikyow T; Hasegawa T; Koinuma H; Kawasaki M
    Nat Mater; 2004 Apr; 3(4):221-4. PubMed ID: 15034563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-temperature violation of the anomalous transverse Wiedemann-Franz law.
    Xu L; Li X; Lu X; Collignon C; Fu H; Koo J; Fauqué B; Yan B; Zhu Z; Behnia K
    Sci Adv; 2020 Apr; 6(17):eaaz3522. PubMed ID: 32494640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.
    Wang J; Wu Z; Mao C; Zhao Y; Yang J; Chen Y
    Sci Rep; 2018 Mar; 8(1):4862. PubMed ID: 29559677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity in the vicinity of the quantum critical end point in Sr3Ru2O7.
    Ronning F; Hill RW; Sutherland M; Hawthorn DG; Tanatar MA; Paglione J; Taillefer L; Graf MJ; Perry RS; Maeno Y; Mackenzie AP
    Phys Rev Lett; 2006 Aug; 97(6):067005. PubMed ID: 17026193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State.
    Chang CZ; Zhao W; Kim DY; Wei P; Jain JK; Liu C; Chan MH; Moodera JS
    Phys Rev Lett; 2015 Jul; 115(5):057206. PubMed ID: 26274440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantized anomalous Hall effect in two-dimensional ferromagnets: quantum Hall effect in metals.
    Onoda M; Nagaosa N
    Phys Rev Lett; 2003 May; 90(20):206601. PubMed ID: 12785910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical probe for anomalous Hall resonance in ferromagnets with spin chirality.
    Iguchi S; Kumakura S; Onose Y; Bordács S; Kézsmárki I; Nagaosa N; Tokura Y
    Phys Rev Lett; 2009 Dec; 103(26):267206. PubMed ID: 20366343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy magnetization and the thermal Hall effect.
    Qin T; Niu Q; Shi J
    Phys Rev Lett; 2011 Dec; 107(23):236601. PubMed ID: 22182111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous heat flow in 8-Pmmn borophene with tilted Dirac cones.
    Sengupta P; Tan Y; Bellotti E; Shi J
    J Phys Condens Matter; 2018 Oct; 30(43):435701. PubMed ID: 30210060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Electron Heat Conduction in TaS
    Yi H; Bahng J; Park S; Dang DX; Sakong W; Kang S; Ahn BW; Kim J; Kim KK; Lim JT; Lim SC
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switchable quantum anomalous Hall state in a strongly frustrated lattice magnet.
    Venderbos JW; Daghofer M; van den Brink J; Kumar S
    Phys Rev Lett; 2012 Oct; 109(16):166405. PubMed ID: 23215101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous Hall effect and electron transport in ferromagnetic MnBi films.
    Kharel P; Sellmyer DJ
    J Phys Condens Matter; 2011 Oct; 23(42):426001. PubMed ID: 21969233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.