These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 18232798)

  • 21. Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites.
    Filippetti A; Mattoni A; Caddeo C; Saba MI; Delugas P
    Phys Chem Chem Phys; 2016 Jun; 18(22):15352-62. PubMed ID: 27211818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of the thermodynamic properties of bilayer graphene by atomic plane rotations: the role of the out-of-plane phonons.
    Cocemasov AI; Nika DL; Balandin AA
    Nanoscale; 2015 Aug; 7(30):12851-9. PubMed ID: 26159467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal conductivity of twisted bilayer graphene.
    Li H; Ying H; Chen X; Nika DL; Cocemasov AI; Cai W; Balandin AA; Chen S
    Nanoscale; 2014 Nov; 6(22):13402-8. PubMed ID: 25273673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides.
    Hong X; Posadas A; Zou K; Ahn CH; Zhu J
    Phys Rev Lett; 2009 Apr; 102(13):136808. PubMed ID: 19392391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction.
    Chen J; Xi J; Wang D; Shuai Z
    J Phys Chem Lett; 2013 May; 4(9):1443-8. PubMed ID: 26282296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low Exciton-Phonon Coupling, High Charge Carrier Mobilities, and Multiexciton Properties in Two-Dimensional Lead, Silver, Cadmium, and Copper Chalcogenide Nanostructures.
    Ding Y; Singh V; Goodman SM; Nagpal P
    J Phys Chem Lett; 2014 Dec; 5(24):4291-7. PubMed ID: 26273976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonon-limited transport coefficients in extrinsic graphene.
    Muñoz E
    J Phys Condens Matter; 2012 May; 24(19):195302. PubMed ID: 22517027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of magnetic field on electronic transport in a bilayer graphene nanomesh.
    Liu Y; Liu X; Zhang Y; Xia Q; He J
    Nanotechnology; 2017 Jun; 28(23):235303. PubMed ID: 28516895
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Thermoelectric Power in Graphene: Violation of the Mott Relation by Inelastic Scattering.
    Ghahari F; Xie HY; Taniguchi T; Watanabe K; Foster MS; Kim P
    Phys Rev Lett; 2016 Apr; 116(13):136802. PubMed ID: 27081996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Observation of long spin-relaxation times in bilayer graphene at room temperature.
    Yang TY; Balakrishnan J; Volmer F; Avsar A; Jaiswal M; Samm J; Ali SR; Pachoud A; Zeng M; Popinciuc M; Güntherodt G; Beschoten B; Özyilmaz B
    Phys Rev Lett; 2011 Jul; 107(4):047206. PubMed ID: 21867039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of flexural phonons in carrier mobility of two-dimensional semiconductors: free standing vs on substrate.
    Zhang C; Cheng L; Liu Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33621967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carrier Transport Properties of Bilayer Graphene Obtained via Hall Measurements.
    Jeon H; Park BH; Jang M
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7482-5. PubMed ID: 26726355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene.
    Huang J; Alexander-Webber JA; Janssen TJ; Tzalenchuk A; Yager T; Lara-Avila S; Kubatkin S; Myers-Ward RL; Wheeler VD; Gaskill DK; Nicholas RJ
    J Phys Condens Matter; 2015 Apr; 27(16):164202. PubMed ID: 25835029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unconventional transport through graphene on SrTiO₃: a plausible effect of SrTiO₃ phase-transitions.
    Saha S; Kahya O; Jaiswal M; Srivastava A; Annadi A; Balakrishnan J; Pachoud A; Toh CT; Hong BH; Ahn JH; Venkatesan T; Özyilmaz B
    Sci Rep; 2014 Aug; 4():6173. PubMed ID: 25146230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene.
    Gunst T; Kaasbjerg K; Brandbyge M
    Phys Rev Lett; 2017 Jan; 118(4):046601. PubMed ID: 28186808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating the Sources of Graphene's Resistivity Using Differential Conductance.
    Somphonsane R; Ramamoorthy H; He G; Nathawat J; Kwan CP; Arabchigavkani N; Lee YH; Fransson J; Bird JP
    Sci Rep; 2017 Sep; 7(1):10317. PubMed ID: 28871185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dephasing time in graphene due to interaction with flexural phonons.
    Tikhonov KS; Zhao WL; Finkel'stein AM
    Phys Rev Lett; 2014 Aug; 113(7):076601. PubMed ID: 25170722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexural phonons in free-standing graphene.
    Mariani E; von Oppen F
    Phys Rev Lett; 2008 Feb; 100(7):076801. PubMed ID: 18352583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures.
    Saeki A; Koizumi Y; Aida T; Seki S
    Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.