These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18232814)

  • 1. Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles.
    Wang RM; Dmitrieva O; Farle M; Dumpich G; Ye HQ; Poppa H; Kilaas R; Kisielowski C
    Phys Rev Lett; 2008 Jan; 100(1):017205. PubMed ID: 18232814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural stability of icosahedral FePt nanoparticles.
    Wang R; Zhang H; Farle M; Kisielowski C
    Nanoscale; 2009 Nov; 1(2):276-9. PubMed ID: 20644850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled co-deposition of FePt nanoparticles embedded in MgO: a detailed investigation of structure and electronic and magnetic properties.
    D'Addato S; Grillo V; di Bona A; Luches P; Frabboni S; Valeri S; Lupo P; Casoli F; Albertini F
    Nanotechnology; 2013 Dec; 24(49):495703. PubMed ID: 24231177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles.
    Teng X; Yang H
    J Am Chem Soc; 2003 Nov; 125(47):14559-63. PubMed ID: 14624605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhomogeneous alloying in FePt nanoparticles as a reason for reduced magnetic moments.
    Antoniak C; Spasova M; Trunova A; Fauth K; Wilhelm F; Rogalev A; Minár J; Ebert H; Farle M; Wende H
    J Phys Condens Matter; 2009 Aug; 21(33):336002. PubMed ID: 21828614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-principles calculations on Fe-Pt nanoclusters of various morphologies.
    Platonenko A; Piskunov S; Bocharov D; Zhukovskii YF; Evarestov RA; Bellucci S
    Sci Rep; 2017 Sep; 7(1):10579. PubMed ID: 28874775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.
    Zhang S; Hao Y; Su D; Doan-Nguyen VV; Wu Y; Li J; Sun S; Murray CB
    J Am Chem Soc; 2014 Nov; 136(45):15921-4. PubMed ID: 25350678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe oxidation versus Pt segregation in FePt nanoparticles and thin films.
    Han L; Wiedwald U; Kuerbanjiang B; Ziemann P
    Nanotechnology; 2009 Jul; 20(28):285706. PubMed ID: 19550015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FePt@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells.
    Gao J; Liang G; Zhang B; Kuang Y; Zhang X; Xu B
    J Am Chem Soc; 2007 Feb; 129(5):1428-33. PubMed ID: 17263428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Strain Distributions in Individual Dealloyed Pt-Fe Catalyst Nanoparticles.
    Gan L; Yu R; Luo J; Cheng Z; Zhu J
    J Phys Chem Lett; 2012 Apr; 3(7):934-8. PubMed ID: 26286424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding mercapto ligand exchange on the surface of FePt nanoparticles.
    Bagaria HG; Ada ET; Shamsuzzoha M; Nikles DE; Johnson DT
    Langmuir; 2006 Aug; 22(18):7732-7. PubMed ID: 16922557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyoxometalate-stabilized, water dispersible Fe₂Pt magnetic nanoparticles.
    Seemann KM; Bauer A; Kindervater J; Meyer M; Besson C; Luysberg M; Durkin P; Pyckhout-Hintzen W; Budisa N; Georgii R; Schneider CM; Kögerler P
    Nanoscale; 2013 Mar; 5(6):2511-9. PubMed ID: 23412503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-surface strain in icosahedra of binary metallic alloys: segregational versus intrinsic effects.
    Pohl D; Wiesenhütter U; Mohn E; Schultz L; Rellinghaus B
    Nano Lett; 2014; 14(4):1776-84. PubMed ID: 24588256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of leaching on surface composition, microstructure, and valence band of single grain icosahedral Al-Cu-Fe quasicrystal.
    Lowe M; Yadav TP; Fournée V; Ledieu J; McGrath R; Sharma HR
    J Chem Phys; 2015 Mar; 142(9):094703. PubMed ID: 25747095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of a surface induced disordering process in magnetic nanoparticles.
    Kovács A; Sato K; Lazarov VK; Galindo PL; Konno TJ; Hirotsu Y
    Phys Rev Lett; 2009 Sep; 103(11):115703. PubMed ID: 19792385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction.
    Mazumder V; Chi M; More KL; Sun S
    J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ magnetic and electronic investigation of the early stage oxidation of Fe nanoparticles using X-ray photo-emission electron microscopy.
    Vaz CA; Balan A; Nolting F; Kleibert A
    Phys Chem Chem Phys; 2014 Dec; 16(48):26624-30. PubMed ID: 25255452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.