These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18232820)

  • 1. Triplet exciton diffusion and phosphorescence quenching in iridium(III)-centered dendrimers.
    Ribierre JC; Ruseckas A; Knights K; Staton SV; Cumpstey N; Burn PL; Samuel ID
    Phys Rev Lett; 2008 Jan; 100(1):017402. PubMed ID: 18232820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(iii) complexes in thin films on dielectric surfaces.
    Ribierre JC; Ruseckas A; Staton SV; Knights K; Cumpstey N; Burn PL; Samuel ID
    Phys Chem Chem Phys; 2016 Feb; 18(5):3575-80. PubMed ID: 26750542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A divergent synthesis of very large polyphenylene dendrimers with iridium(III) cores: molecular size effect on the performance of phosphorescent organic light-emitting diodes.
    Qin T; Ding J; Wang L; Baumgarten M; Zhou G; Müllen K
    J Am Chem Soc; 2009 Oct; 131(40):14329-36. PubMed ID: 19757777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses.
    Raišys S; Kazlauskas K; Juršėnas S; Simon YC
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15732-40. PubMed ID: 27219281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressed Triplet Exciton Diffusion Due to Small Orbital Overlap as a Key Design Factor for Ultralong-Lived Room-Temperature Phosphorescence in Molecular Crystals.
    Narushima K; Kiyota Y; Mori T; Hirata S; Vacha M
    Adv Mater; 2019 Mar; 31(10):e1807268. PubMed ID: 30633401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Tuning of Organic Phosphorescence by Diluting Triplet Diffusion at the Molecular Level.
    Hu J; Wyatt PB; Gillin WP; Ye H
    J Phys Chem Lett; 2018 Apr; 9(8):2022-2024. PubMed ID: 29617138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular donor-acceptor stacking to suppress triplet exciton diffusion for long-persistent organic room-temperature phosphorescence.
    Ma J; Dou J; Xu N; Wang G; Duan Y; Liao Y; Yi Y; Geng H
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38421074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving efficiency roll-off in phosphorescent OLEDs by modifying the exciton lifetime.
    Ji W; Zhang L; Xie W
    Opt Lett; 2012 Jun; 37(11):2019-21. PubMed ID: 22660107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorescent resonant energy transfer between iridium complexes.
    Wasserberg D; Meskers SC; Janssen RA
    J Phys Chem A; 2007 Mar; 111(8):1381-8. PubMed ID: 17279734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of the triplet exciton diffusion length in organic semiconductors.
    Mikhnenko OV; Ruiter R; Blom PW; Loi MA
    Phys Rev Lett; 2012 Mar; 108(13):137401. PubMed ID: 22540725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brighten Triplet Excitons of Carbon Nanodots for Multicolor Phosphorescence Films.
    Cao Q; Liu KK; Liang YC; Song SY; Deng Y; Mao X; Wang Y; Zhao WB; Lou Q; Shan CX
    Nano Lett; 2022 May; 22(10):4097-4105. PubMed ID: 35536674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the dendron chemical structure on the photophysical properties of bisfluorene-cored dendrimers.
    Ribierre JC; Ruseckas A; Samuel ID; Barcena HS; Burn PL
    J Chem Phys; 2008 May; 128(20):204703. PubMed ID: 18513038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers.
    Andernach R; Utzat H; Dimitrov SD; McCulloch I; Heeney M; Durrant JR; Bronstein H
    J Am Chem Soc; 2015 Aug; 137(32):10383-90. PubMed ID: 26200595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling exciton processes in Ir(ppy)
    Sanderson S; Vamvounis G; Mark AE; Burn PL; White RD; Philippa BW
    J Chem Phys; 2021 Apr; 154(16):164101. PubMed ID: 33940818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():183-95. PubMed ID: 23933843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge recombination and exciton annihilation reactions in conjugated polymer blends.
    Howard IA; Hodgkiss JM; Zhang X; Kirov KR; Bronstein HA; Williams CK; Friend RH; Westenhoff S; Greenham NC
    J Am Chem Soc; 2010 Jan; 132(1):328-35. PubMed ID: 19961228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative polaron and triplet exciton diffusion in organometallic "molecular wires".
    Keller JM; Glusac KD; Danilov EO; McIlroy S; Sreearuothai P; Cook AR; Jiang H; Miller JR; Schanze KS
    J Am Chem Soc; 2011 Jul; 133(29):11289-98. PubMed ID: 21644580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorescence quenching by conjugated polymers.
    Sudhakar M; Djurovich PI; Hogen-Esch TE; Thompson ME
    J Am Chem Soc; 2003 Jul; 125(26):7796-7. PubMed ID: 12822986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorescence of pi-conjugated oligomers and polymers.
    Romanovskii YV; Gerhard A; Schweitzer B; Scherf U; Personov RI; Bassler H
    Phys Rev Lett; 2000 Jan; 84(5):1027-30. PubMed ID: 11017432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet exciton fission in thin films of tert-butyl-substituted terrylenes.
    Eaton SW; Miller SA; Margulies EA; Shoer LE; Schaller RD; Wasielewski MR
    J Phys Chem A; 2015 May; 119(18):4151-61. PubMed ID: 25856414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.