These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 18232885)

  • 1. Critical role of inelastic interactions in quantitative electron microscopy.
    Mkhoyan KA; Maccagnano-Zacher SE; Thomas MG; Silcox J
    Phys Rev Lett; 2008 Jan; 100(2):025503. PubMed ID: 18232885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inelastic multislice simulation method incorporating plasmon energy losses.
    Mendis BG
    Ultramicroscopy; 2019 Nov; 206():112816. PubMed ID: 31377522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of a nanoscale coherent helium-ion probe with a crystal.
    D'Alfonso AJ; Forbes BD; Allen LJ
    Ultramicroscopy; 2013 Nov; 134():18-22. PubMed ID: 23876709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of inelastic scattering in phase-plate transmission electron microscopy.
    Hettler S; Wagner J; Dries M; Oster M; Wacker C; Schröder RR; Gerthsen D
    Ultramicroscopy; 2015 Aug; 155():27-41. PubMed ID: 25879156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of inelastic scattering on crystal structure refinement from electron diffraction patterns recorded under almost parallel illumination.
    Jansen J; Zandbergen HW; Otten MT
    Ultramicroscopy; 2004 Jan; 98(2-4):165-72. PubMed ID: 15046796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angle-resolved STEM using an iris aperture: Scattering contributions and sources of error for the quantitative analysis in Si.
    Grieb T; Krause FF; Müller-Caspary K; Firoozabadi S; Mahr C; Schowalter M; Beyer A; Oppermann O; Volz K; Rosenauer A
    Ultramicroscopy; 2021 Feb; 221():113175. PubMed ID: 33383361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent inelastic scattering in Si and TiAl.
    Moodie AF; Colson TA; Whitfield HJ
    Ultramicroscopy; 2004 Nov; 101(2-4):247-55. PubMed ID: 15450670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.
    Mendis B
    Acta Crystallogr A Found Adv; 2024 Mar; 80(Pt 2):178-188. PubMed ID: 38270201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position averaged convergent beam electron diffraction: theory and applications.
    Lebeau JM; Findlay SD; Allen LJ; Stemmer S
    Ultramicroscopy; 2010 Jan; 110(2):118-25. PubMed ID: 19939565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the inelastic mean-free-path and mean inner potential for AlAs and GaAs using off-axis electron holography and convergent beam electron diffraction.
    Chung S; Smith DJ; McCartney MR
    Microsc Microanal; 2007 Oct; 13(5):329-35. PubMed ID: 17900382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique.
    Warot-Fonrose B; Houdellier F; Hÿtch MJ; Calmels L; Serin V; Snoeck E
    Ultramicroscopy; 2008 Apr; 108(5):393-8. PubMed ID: 17619085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thickness difference: a new filtering tool for quantitative electron diffraction.
    Nakashima PN
    Phys Rev Lett; 2007 Sep; 99(12):125506. PubMed ID: 17930519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inelastic scattering and solvent scattering reduce dynamical diffraction in biological crystals.
    Latychevskaia T; Abrahams JP
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Aug; 75(Pt 4):523-531. PubMed ID: 32830710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principles of depth-resolved Kikuchi pattern simulation for electron backscatter diffraction.
    Winkelmann A
    J Microsc; 2010 Jul; 239(1):32-45. PubMed ID: 20579267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy.
    Beyer A; Krause FF; Robert HL; Firoozabadi S; Grieb T; Kükelhan P; Heimes D; Schowalter M; Müller-Caspary K; Rosenauer A; Volz K
    Sci Rep; 2020 Oct; 10(1):17890. PubMed ID: 33087734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple scattering effects of MeV electrons in very thick amorphous specimens.
    Wang F; Zhang HB; Cao M; Nishi R; Takaoka A
    Ultramicroscopy; 2010 Feb; 110(3):259-68. PubMed ID: 20079570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative atomic cross section analysis by 4D-STEM and EELS.
    Seifer S; Houben L; Elbaum M
    Ultramicroscopy; 2024 May; 259():113936. PubMed ID: 38359631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of inelastic scattering on EFTEM images--exemplified at 20 kV for graphene and silicon.
    Lee Z; Rose H; Hambach R; Wachsmuth P; Kaiser U
    Ultramicroscopy; 2013 Nov; 134():102-12. PubMed ID: 23870401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speckle Suppression by Decoherence in Fluctuation Electron Microscopy.
    Rezikyan A; Jibben ZJ; Rock BA; Zhao G; Koeck FA; Nemanich RF; Treacy MM
    Microsc Microanal; 2015 Dec; 21(6):1455-1474. PubMed ID: 26650071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zero-loss image formation and modified contrast transfer theory in EFTEM.
    Angert I; Majorovits E; Schröder RR
    Ultramicroscopy; 2000 Apr; 81(3-4):203-22. PubMed ID: 10782645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.