These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18232906)

  • 21. Coulomb drag mechanisms in graphene.
    Song JC; Abanin DA; Levitov LS
    Nano Lett; 2013 Aug; 13(8):3631-7. PubMed ID: 23834416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiband Mechanism for the Sign Reversal of Coulomb Drag Observed in Double Bilayer Graphene Heterostructures.
    Zarenia M; Hamilton AR; Peeters FM; Neilson D
    Phys Rev Lett; 2018 Jul; 121(3):036601. PubMed ID: 30085815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems.
    Zhu L; Liu X; Li L; Wan X; Tao R; Xie Z; Feng J; Zeng C
    Nat Commun; 2023 Mar; 14(1):1465. PubMed ID: 36927844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy-driven drag at charge neutrality in graphene.
    Song JC; Levitov LS
    Phys Rev Lett; 2012 Dec; 109(23):236602. PubMed ID: 23368234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong enhancement of drag and dissipation at the weak- to strong-coupling phase transition in a bilayer system at a total Landau level filling nu = 1.
    Stern A; Halperin BI
    Phys Rev Lett; 2002 Mar; 88(10):106801. PubMed ID: 11909380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negative Coulomb drag in a one-dimensional wire.
    Yamamoto M; Stopa M; Tokura Y; Hirayama Y; Tarucha S
    Science; 2006 Jul; 313(5784):204-7. PubMed ID: 16840694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature dependence of coulomb drag between finite-length quantum wires.
    Peguiron J; Bruder C; Trauzettel B
    Phys Rev Lett; 2007 Aug; 99(8):086404. PubMed ID: 17930966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Positive and negative Coulomb drag in vertically integrated one-dimensional quantum wires.
    Laroche D; Gervais G; Lilly MP; Reno JL
    Nat Nanotechnol; 2011 Oct; 6(12):793-7. PubMed ID: 22036809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the temperature dependence of ballistic Coulomb drag in nanowires.
    Muradov MI; Gurevich VL
    J Phys Condens Matter; 2012 Apr; 24(13):135304. PubMed ID: 22406816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy Drag in Particle-Hole Symmetric Systems as a Quantum Quench.
    Berdanier W; Scaffidi T; Moore JE
    Phys Rev Lett; 2019 Dec; 123(24):246603. PubMed ID: 31922879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prospecting for the superfluid transition in electron-hole coupled quantum wells using coulomb drag.
    Hu BY
    Phys Rev Lett; 2000 Jul; 85(4):820-3. PubMed ID: 10991407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insulating behavior at the neutrality point in single-layer graphene.
    Amet F; Williams JR; Watanabe K; Taniguchi T; Goldhaber-Gordon D
    Phys Rev Lett; 2013 May; 110(21):216601. PubMed ID: 23745906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-temperature electronic transport in single K(0.27)MnO(2)·0.5H(2)O nanowires: enhanced electron-electron interaction.
    Long YZ; Yin ZH; Chen ZJ; Jin AZ; Gu CZ; Zhang HT; Chen XH
    Nanotechnology; 2008 May; 19(21):215708. PubMed ID: 21730587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic correlation effects and the Coulomb gap at finite temperature.
    Sandow B; Gloos K; Rentzsch R; Ionov AN; Schirmacher W
    Phys Rev Lett; 2001 Feb; 86(9):1845-8. PubMed ID: 11290263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Giant fluctuations of coulomb drag in a bilayer system.
    Price AS; Savchenko AK; Narozhny BN; Allison G; Ritchie DA
    Science; 2007 Apr; 316(5821):99-102. PubMed ID: 17412956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spin Hall drag in electronic bilayers.
    Badalyan SM; Vignale G
    Phys Rev Lett; 2009 Nov; 103(19):196601. PubMed ID: 20365939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crossover from the Luttinger-liquid to Coulomb-blockade regime in carbon nanotubes.
    Bellucci S; González J; Onorato P
    Phys Rev Lett; 2005 Oct; 95(18):186403. PubMed ID: 16383926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of superconductivity in granular metals.
    Beloborodov IS; Lopatin AV; Vinokur VM
    Phys Rev Lett; 2004 May; 92(20):207002. PubMed ID: 15169375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mesoscopic Coulomb drag, broken detailed balance, and fluctuation relations.
    Sánchez R; López R; Sánchez D; Büttiker M
    Phys Rev Lett; 2010 Feb; 104(7):076801. PubMed ID: 20366901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coulomb drag in coherent mesoscopic systems.
    Mortensen NA; Flensberg K; Jauho AP
    Phys Rev Lett; 2001 Feb; 86(9):1841-4. PubMed ID: 11290262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.