These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 18233007)
1. Direct calculation of solid-liquid interfacial free energy for molecular systems: TIP4P ice-water interface. Handel R; Davidchack RL; Anwar J; Brukhno A Phys Rev Lett; 2008 Jan; 100(3):036104. PubMed ID: 18233007 [TBL] [Abstract][Full Text] [Related]
2. Ice Ih-Water Interfacial Free Energy of Simple Water Models with Full Electrostatic Interactions. Davidchack RL; Handel R; Anwar J; Brukhno AV J Chem Theory Comput; 2012 Jul; 8(7):2383-90. PubMed ID: 26588971 [TBL] [Abstract][Full Text] [Related]
3. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface. García Fernández R; Abascal JL; Vega C J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213 [TBL] [Abstract][Full Text] [Related]
4. Solid-Liquid Interfacial Free Energy of Water: A Molecular Dynamics Simulation Study. Wang J; Tang YW; Zeng XC J Chem Theory Comput; 2007 Jul; 3(4):1494-8. PubMed ID: 26633220 [TBL] [Abstract][Full Text] [Related]
5. A study of the ice-water interface using the TIP4P/2005 water model. Benet J; MacDowell LG; Sanz E Phys Chem Chem Phys; 2014 Oct; 16(40):22159-66. PubMed ID: 25213106 [TBL] [Abstract][Full Text] [Related]
6. Homogeneous ice nucleation evaluated for several water models. Espinosa JR; Sanz E; Valeriani C; Vega C J Chem Phys; 2014 Nov; 141(18):18C529. PubMed ID: 25399194 [TBL] [Abstract][Full Text] [Related]
7. Anisotropy in the crystal growth of hexagonal ice, I(h). Rozmanov D; Kusalik PG J Chem Phys; 2012 Sep; 137(9):094702. PubMed ID: 22957581 [TBL] [Abstract][Full Text] [Related]
8. On the time required to freeze water. Espinosa JR; Navarro C; Sanz E; Valeriani C; Vega C J Chem Phys; 2016 Dec; 145(21):211922. PubMed ID: 28799362 [TBL] [Abstract][Full Text] [Related]
9. Surface tension of the most popular models of water by using the test-area simulation method. Vega C; de Miguel E J Chem Phys; 2007 Apr; 126(15):154707. PubMed ID: 17461659 [TBL] [Abstract][Full Text] [Related]
10. Competition between ices Ih and Ic in homogeneous water freezing. Zaragoza A; Conde MM; Espinosa JR; Valeriani C; Vega C; Sanz E J Chem Phys; 2015 Oct; 143(13):134504. PubMed ID: 26450320 [TBL] [Abstract][Full Text] [Related]
11. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations. Weiss VC; Rullich M; Köhler C; Frauenheim T J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017 [TBL] [Abstract][Full Text] [Related]
12. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice. Vega C; Abascal JL; Nezbeda I J Chem Phys; 2006 Jul; 125(3):34503. PubMed ID: 16863358 [TBL] [Abstract][Full Text] [Related]
13. Crystal growth investigations of ice∕water interfaces from molecular dynamics simulations: Profile functions and average properties. Razul MS; Kusalik PG J Chem Phys; 2011 Jan; 134(1):014710. PubMed ID: 21219023 [TBL] [Abstract][Full Text] [Related]
14. Properties of ices at 0 K: a test of water models. Aragones JL; Noya EG; Abascal JL; Vega C J Chem Phys; 2007 Oct; 127(15):154518. PubMed ID: 17949184 [TBL] [Abstract][Full Text] [Related]
15. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase. Aragones JL; Conde MM; Noya EG; Vega C Phys Chem Chem Phys; 2009 Jan; 11(3):543-55. PubMed ID: 19283272 [TBL] [Abstract][Full Text] [Related]
16. Homogeneous ice nucleation at moderate supercooling from molecular simulation. Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583 [TBL] [Abstract][Full Text] [Related]
17. Free energy calculations for a flexible water model. Habershon S; Manolopoulos DE Phys Chem Chem Phys; 2011 Nov; 13(44):19714-27. PubMed ID: 21887423 [TBL] [Abstract][Full Text] [Related]
18. Melting points and thermal expansivities of proton-disordered hexagonal ice with several model potentials. Koyama Y; Tanaka H; Gao G; Zeng XC J Chem Phys; 2004 Oct; 121(16):7926-31. PubMed ID: 15485255 [TBL] [Abstract][Full Text] [Related]
19. Best face forward: crystal-face competition at the ice-water interface. Shultz MJ; Bisson PJ; Brumberg A J Phys Chem B; 2014 Jul; 118(28):7972-80. PubMed ID: 24784996 [TBL] [Abstract][Full Text] [Related]
20. Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations. Piaggi PM; Car R J Chem Phys; 2020 May; 152(20):204116. PubMed ID: 32486691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]