These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18233096)

  • 61. Magnetic properties of multiferroics-semiconductors Eu(1-x)Ce(x)Mn2O5.
    Sanina VA; Golovenchits EI; Zalesskii VG; Scheglov MP
    J Phys Condens Matter; 2011 Nov; 23(45):456003. PubMed ID: 22037536
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The modulation of the de Haas-van Alphen effect in graphene by electric field.
    Zhang S; Ma N; Zhang E
    J Phys Condens Matter; 2010 Mar; 22(11):115302. PubMed ID: 21389460
    [TBL] [Abstract][Full Text] [Related]  

  • 63. On the role of intermolecular interactions on structural and spin-crossover properties of 2D coordination networks [Fe(bbtr)3]A2 (bbtr=1,4-bis(1,2,3-triazol-1-yl)butane; A=ClO4(-), BF4(-)).
    Kusz J; Bronisz R; Zubko M; Bednarek G
    Chemistry; 2011 Jun; 17(24):6807-20. PubMed ID: 21547970
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Large thermal hysteresis for iron(II) spin crossover complexes with N-(pyrid-4-yl)isonicotinamide.
    Lochenie C; Bauer W; Railliet AP; Schlamp S; Garcia Y; Weber B
    Inorg Chem; 2014 Nov; 53(21):11563-72. PubMed ID: 25314334
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Superconductivity and itinerant ferromagnetism of Y9Co7 probed by ac susceptibility.
    Gordon RT; Vannette MD; Strychalska J; Klimczuk T; Cava RJ; Prozorov R
    J Phys Condens Matter; 2016 Apr; 28(16):166006. PubMed ID: 27022686
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Weak itinerant ferromagnetism and non-Fermi liquid behavior in Ni-
    Vishvakarma S; Srinivas V
    J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33567418
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Disorder-driven non-Fermi liquid behavior in itinerant ferromagnet α-Co
    Song M; Xian C; Wang Y; Song J; Li Z; Ling L; Zhang L; Han Y; Cao L; Xiong Y
    J Phys Condens Matter; 2020 Apr; 32(15):155802. PubMed ID: 31846939
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spin excitations in solids from many-body perturbation theory.
    Friedrich C; Saşıoğlu E; Müller M; Schindlmayr A; Blügel S
    Top Curr Chem; 2014; 347():259-301. PubMed ID: 24577607
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An itinerant antiferromagnetic metal without magnetic constituents.
    Svanidze E; Wang JK; Besara T; Liu L; Huang Q; Siegrist T; Frandsen B; Lynn JW; Nevidomskyy AH; Gamża MB; Aronson MC; Uemura YJ; Morosan E
    Nat Commun; 2015 Jul; 6():7701. PubMed ID: 26166042
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spin excitations in a Fermi gas of atoms.
    DeMarco B; Jin DS
    Phys Rev Lett; 2002 Jan; 88(4):040405. PubMed ID: 11801098
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Thermal hysteresis in a spin-crossover Fe(III) quinolylsalicylaldimine complex, Fe(III)(5-Br-qsal)2Ni(dmit)2·solv: solvent effects.
    Vieira BJ; Dias JC; Santos IC; Pereira LC; da Gama V; Waerenborgh JC
    Inorg Chem; 2015 Feb; 54(4):1354-62. PubMed ID: 25634799
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Temperature Dependence of Magnetic Excitations: Terahertz Magnons above the Curie Temperature.
    Qin HJ; Zakeri K; Ernst A; Kirschner J
    Phys Rev Lett; 2017 Mar; 118(12):127203. PubMed ID: 28388202
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3.
    Das D; Gruner T; Pfau H; Paramanik UB; Burkhardt U; Geibel C; Hossain Z
    J Phys Condens Matter; 2014 Mar; 26(10):106001. PubMed ID: 24553355
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ferromagnetic Quantum Critical Point Avoided by the Appearance of Another Magnetic Phase in LaCrGe_{3} under Pressure.
    Taufour V; Kaluarachchi US; Khasanov R; Nguyen MC; Guguchia Z; Biswas PK; Bonfà P; De Renzi R; Lin X; Kim SK; Mun ED; Kim H; Furukawa Y; Wang CZ; Ho KM; Bud'ko SL; Canfield PC
    Phys Rev Lett; 2016 Jul; 117(3):037207. PubMed ID: 27472137
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Using the de Haas-van Alphen effect to map out the closed three-dimensional Fermi surface of natural graphite.
    Schneider JM; Piot BA; Sheikin I; Maude DK
    Phys Rev Lett; 2012 Mar; 108(11):117401. PubMed ID: 22540506
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantum phase transitions of magnetic rotons.
    Schmalian J; Turlakov M
    Phys Rev Lett; 2004 Jul; 93(3):036405. PubMed ID: 15323847
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fermi-surface reconstruction in CeRh1-xCoxIn5.
    Goh SK; Paglione J; Sutherland M; O'Farrell EC; Bergemann C; Sayles TA; Maple MB
    Phys Rev Lett; 2008 Aug; 101(5):056402. PubMed ID: 18764411
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry.
    Coldea R; Tennant DA; Wheeler EM; Wawrzynska E; Prabhakaran D; Telling M; Habicht K; Smeibidl P; Kiefer K
    Science; 2010 Jan; 327(5962):177-80. PubMed ID: 20056884
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Unconventional temperature enhanced magnetism in Fe1.1Te.
    Zaliznyak IA; Xu Z; Tranquada JM; Gu G; Tsvelik AM; Stone MB
    Phys Rev Lett; 2011 Nov; 107(21):216403. PubMed ID: 22181901
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments.
    Classen L; Zaliznyak I; Tsvelik AM
    Phys Rev Lett; 2018 Apr; 120(15):156404. PubMed ID: 29756896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.