These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Subdiffusive master equation with space-dependent anomalous exponent and structural instability. Fedotov S; Falconer S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031132. PubMed ID: 22587063 [TBL] [Abstract][Full Text] [Related]
3. Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations. Czégel D; Balogh SG; Pollner P; Palla G Sci Rep; 2018 Jan; 8(1):1883. PubMed ID: 29382874 [TBL] [Abstract][Full Text] [Related]
4. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. Gajda J; Magdziarz M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575 [TBL] [Abstract][Full Text] [Related]
5. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation. Han HT; Joo S; Sakaue T; Jeon JH J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046 [TBL] [Abstract][Full Text] [Related]
6. Non-Gaussian equilibrium distributions arising from the Langevin equation. Annunziato M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021113. PubMed ID: 11863509 [TBL] [Abstract][Full Text] [Related]
7. Fractional dynamics from the ordinary Langevin equation. Stanislavsky AA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 1):021111. PubMed ID: 12636657 [TBL] [Abstract][Full Text] [Related]
8. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory. Joo S; Durang X; Lee OC; Jeon JH Soft Matter; 2020 Oct; 16(40):9188-9201. PubMed ID: 32840541 [TBL] [Abstract][Full Text] [Related]
9. Anomalous diffusion for overdamped particles driven by cross-correlated white noise sources. Denisov SI; Vitrenko AN; Horsthemke W; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036120. PubMed ID: 16605611 [TBL] [Abstract][Full Text] [Related]
10. Viscoelastic subdiffusion: from anomalous to normal. Goychuk I Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046125. PubMed ID: 19905408 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear subdiffusive fractional equations and the aggregation phenomenon. Fedotov S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032104. PubMed ID: 24125211 [TBL] [Abstract][Full Text] [Related]
12. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes. Anderson J; Moradi S; Rafiq T Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849 [TBL] [Abstract][Full Text] [Related]
13. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field. Das J; Mondal S; Bag BC J Chem Phys; 2017 Oct; 147(16):164102. PubMed ID: 29096482 [TBL] [Abstract][Full Text] [Related]
14. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Grima R; Thomas P; Straube AV J Chem Phys; 2011 Aug; 135(8):084103. PubMed ID: 21895155 [TBL] [Abstract][Full Text] [Related]
15. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force. Magdziarz M; Weron A; Klafter J Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398 [TBL] [Abstract][Full Text] [Related]
16. Peculiarities of escape kinetics in the presence of athermal noises. Capała K; Dybiec B; Gudowska-Nowak E Chaos; 2020 Jan; 30(1):013127. PubMed ID: 32013513 [TBL] [Abstract][Full Text] [Related]
17. Influence of the noise spectrum on the anomalous diffusion in a stochastic system. Mallick K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011124. PubMed ID: 19658670 [TBL] [Abstract][Full Text] [Related]
18. Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features. Ghosh PK; Sen MK; Bag BC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051103. PubMed ID: 19113091 [TBL] [Abstract][Full Text] [Related]
19. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
20. From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag. Plastino AR; Curado EMF; Nobre FD; Tsallis C Phys Rev E; 2018 Feb; 97(2-1):022120. PubMed ID: 29548132 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]