These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18233228)

  • 1. Correlation between dynamic heterogeneity and medium-range order in two-dimensional glass-forming liquids.
    Kawasaki T; Araki T; Tanaka H
    Phys Rev Lett; 2007 Nov; 99(21):215701. PubMed ID: 18233228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of bond orientational ordering in glass transition and crystallization.
    Tanaka H
    J Phys Condens Matter; 2011 Jul; 23(28):284115. PubMed ID: 21709320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural origin of dynamic heterogeneity in three-dimensional colloidal glass formers and its link to crystal nucleation.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2010 Jun; 22(23):232102. PubMed ID: 21393759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of medium-range crystalline order in granular liquids near the glass transition.
    Watanabe K; Tanaka H
    Phys Rev Lett; 2008 Apr; 100(15):158002. PubMed ID: 18518153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of many-body correlations in glass transition: an example from polydisperse hard spheres.
    Leocmach M; Russo J; Tanaka H
    J Chem Phys; 2013 Mar; 138(12):12A536. PubMed ID: 23556787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hidden topological order and its correlation with glass-forming ability in metallic glasses.
    Wu ZW; Li MZ; Wang WH; Liu KX
    Nat Commun; 2015 Jan; 6():6035. PubMed ID: 25580857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of local-geometrical-orders on the growth of dynamic-length-scales in glass-forming liquids.
    Wong K; Krishnan RP; Chen C; Du Q; Yu D; Lu Z; Samwer K; Chathoth SM
    Sci Rep; 2018 Jan; 8(1):2025. PubMed ID: 29386575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass Transition in Supercooled Liquids with Medium-Range Crystalline Order.
    Tah I; Sengupta S; Sastry S; Dasgupta C; Karmakar S
    Phys Rev Lett; 2018 Aug; 121(8):085703. PubMed ID: 30192617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the role of static length scales behind glassy dynamics in polydisperse hard disks.
    Russo J; Tanaka H
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6920-4. PubMed ID: 26038545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural origin of enhanced slow dynamics near a wall in glass-forming systems.
    Watanabe K; Kawasaki T; Tanaka H
    Nat Mater; 2011 May; 10(7):512-20. PubMed ID: 21623378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of activated dynamics and glass transition of hard colloids in two dimensions.
    Zhang BK; Li HS; Tian WD; Chen K; Ma YQ
    J Chem Phys; 2014 Mar; 140(9):094506. PubMed ID: 24606367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization and vitrification of electrons in a glass-forming charge liquid.
    Sasaki S; Hashimoto K; Kobayashi R; Itoh K; Iguchi S; Nishio Y; Ikemoto Y; Moriwaki T; Yoneyama N; Watanabe M; Ueda A; Mori H; Kobayashi K; Kumai R; Murakami Y; Müller J; Sasaki T
    Science; 2017 Sep; 357(6358):1381-1385. PubMed ID: 28963251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of attractions on correlation length scales in a glass-forming liquid.
    Xu WS; Sun ZY; An LJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041506. PubMed ID: 23214590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical scaling of icosahedral medium-range order in CuZr metallic glass-forming liquids.
    Wu ZW; Li FX; Huo CW; Li MZ; Wang WH; Liu KX
    Sci Rep; 2016 Oct; 6():35967. PubMed ID: 27779239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absence of thermodynamic phase transition in a model glass former.
    Santen L; Krauth W
    Nature; 2000 Jun; 405(6786):550-1. PubMed ID: 10850709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theories of glass formation and the glass transition.
    Langer JS
    Rep Prog Phys; 2014 Apr; 77(4):042501. PubMed ID: 24646953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using mutual information to measure order in model glass formers.
    Dunleavy AJ; Wiesner K; Royall CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041505. PubMed ID: 23214589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical and theoretical study of a monodisperse hard-sphere glass former.
    Charbonneau P; Ikeda A; van Meel JA; Miyazaki K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):040501. PubMed ID: 20481668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural evolution during fragile-to-strong transition in CuZr(Al) glass-forming liquids.
    Zhou C; Hu L; Sun Q; Zheng H; Zhang C; Yue Y
    J Chem Phys; 2015 Feb; 142(6):064508. PubMed ID: 25681924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.